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SSIMPLE MATHEMATICAL MODELSWITH VERY
COMPLICATED DYNAMICS

Robert M. May*

Abdract. First-order difference equati ons arise in many contexts in the biological, economic and social sciences Such equations, even
though s mple and deterministic, can exhibit asurprising array of dynamical behaviour, from sable paints to a bifurcating hierarchy of
stable cycles, to apparently random fluctuations There are conseguently many fascinating problems, some concerned with delicate
mathematical aspects of. thefine gructure of thetragjectories and some concerned with the practical implications and applications. This
isan interpretive review of them.
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1. INTROUCTION

There are many dtuations, in many disciplines which can be described, at least to a crude first approximation, by asimple firg-order
difference equation. Studies of the dynamical properties of such models usually cons s of finding constant equilibrium solutions, and
then conducting a linearised analyss to determine their gability with respect to small disurbances: explicitly nonlinear dynamical
features are usually not considered.

Recent gudies have, however, shawn that the very s mples nonlinear difference equati ons can possess an extraordinarily rich spectrum
of dynamical behaviour, from gable paints through cascades of stable cycles, to a regime in which the behaviour (although fully
determini gic) isin many respects" chaotic", or indi ginguishable from the sample function of a random process

Thisreview article has several aims.

Firg, although the main featuresof these nonlinear phenomena have been discovered and independently rediscovered by severa people,
I know of no source where all the main results are coll ected together. | havethereforetried to give such asynopti c account. This is done
in abrief and descriptive way, and includes some new material: the detailed mathematical proofs are to be found in the technical
literature, towhich sgnpogsare given.

Second, | indicate some of theintereging mathemati cal questi ons which do not seem to be fully resolved, Some of these problems are of
a practical kind, to do with providing a probabiligic desciiption for trajectories which seem random, even though their underlying

lof 14 09/20/2004 05:09 PM



Simple mathematical models with very complicated dynamics - R.May

structure is determini gic. Other problems are of intring ¢ mathematical interest, and treat such things as the pathd ogy of the bifurcation
structure, or the truly random behaviour, that can ari se when the nonlinear function F(X) of equation (1) is not analytical . One aim here
isto gimulate research onthese questions particularly on the empirical questionswhich relate to processng data.

Third, consideration is given to some fields where these notions may find practical application. Such applications range from the
abgractly metaphorical (where, for example, the transition from a stable point to "chaos" serves as a metaphor for the onset of
turbulencein afluid), to models for the dynamic behaviour of bid ogical popul ations(where one can seek to usefield or |aboratory data
to estimate the val ues of the parameters in the difference equation).

Fourth, thereis avery brief review of theliterature pertaining to theway this spectrum of behaviour - stable points, gabl e cycles, chaos
- can arisein second or higher order difference equations (that is two or more dimensions; two or more interacti ng species), where the
onset of chaos uaualy requires less severe nonlinearities. Differential equations are also surveyed in this light; it seems that a
three-dimend onal system of firg-order ordinary differential equations is requiredfor the manifestation of chaotic behaviour.

Thereview ends with an evangelical pleafor theintroduction of these difference equati ons into el ementary mathemati cscourses, so that
students’ intuition may be enriched by seei ng the wil d things that simple nonlinear equati ons cando.

2. FIRST-ORDER DIFFERENCE EQUATIONS

Orne of the simplest sysems an ecal ogist can sudy is aseasonal ly breeding popul ati on in which generations do not overlapl -4 Many
natural populations, particularly among temperate zone i nsects (i ncl uding many economically important crop and orchard pests), are of
thiskind, In this situation, the observationa data will usually consg of information about the maximum, or the average, or the total
population in each generation. The theoretician seeksto understand how the magnitude of the population in generation t+1, X1 is

rel ated to the magnitude of the populationin the preceding generationt, X uch arelationship may be expressed in the general form
Xipq1 = F(X) (1)

Thefunction F(X) will usually bewhat a biologist calls"density dependent”, and a mathemati cian calls nonlinear; equation (1) isthen a
firg-order, nonlinear difference equation.

Although | shall henceforth adopt the habit of referring to the variable X as “the population”, there are countless dtuations outside
popul ati on bi ol ogy where the bas ¢ equation (1), applies. There are other examples in bid ogy, as for examplein geneti cs2 8 (where the
equation describes the changein gene frequency in time) or in epidemiology z (with X thefraction of the popul ation infected at time t).
Examples in economics include models for the rel ati onship between commodity quartity and pri ce§, for the theory of bus ness cycl &39,
andfor the temporal sequencesgenerated by various other economic quartities 10 The general equation (1) alsois germanetothe social

sciencesl—l, where it arises for example, in theories of learning (where X may be the number of bits of information that can be
remembered after an interval t), or in the propagation of rumours in variously sructured societies (where X is the number of people to
have heard the rumour after timet). Theimaginati ve reader will be able to invent other contexts for equation (1).

In many of these contexts, and for biological populations in particular, there is a tendency for the variable X to increase from one
generationto the next whenit is amall, and for it to decrease whenit islarge. That is the nonlinear function F(X) often hasthe following
properties F(0)=0; F(X) increases monotonical ly as X increases through the range 0 < X < A(with F(X) attaining its maximum value at
X = A); and F(X) decreases monotonically as X increases beyond X = A. Moreover, F(X) will usually contain one or more parameters
which "tune" the severity of this nonlinear behaviour; parameters which tune the seepness of the hump in the F(X) curve. These
parameters will typically have some biological or economic or sociol ogical significance.

A ecific exampl eis afforded by the equationd 4 12 - 23

Nup =N (@-bN) ()

t+1

Thisis sometimescalled the"logigic" difference equation. In thelimit b= 0, it describes apopulation growing purely exponentialy (for
a>1); for b=~ 0, the quadratic nonlinearity produces agrowth curveW|th a hump, the geepness of which is tuned by the parameter a.

By writing X = bN/a, the equati on may be brought into canonical form = 1412-23

K7 @-x) Q@

Inthisform, which is illugrated in Fig. 1, it is arguably the simplest nonlinear difference equation. | shall use equation (3) for most of
the numerical examples and illustrations in this article. Although attractive to mathemati cians by virtue of its extreme simplicity, in
practi cal appli cations equation (3) has the disadvantage that it requires X to remain on the interval 0 < X < 1; if X ever exceeds unity,
subsequent iterations diverge towards - oo (which means the population becomes extinct). Furthermore, F(X) in equation (3) attains a
maximum value of a/4 (at X = 1/2); the equation therefore possesses non-trivial dynamical behaviour only if a < 4. On the other hand,
all trgjectories are attracted to X =0 if a< 1. Thus for non-trivial dynamical behaviour we require 1 < a < 4; failing this, the population
becomes extinct.
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Figure 1. A typical form for the relationship between
X[+1 and X[ described by equetion (1). The curves arefor

equation (3), witha = 2.707 (a); and a = 3.414 (b). The
dashedlines indi cate the slope at the "fixed points" where
F(X) interects the45°line: for thecaseathisdopeisless
steep than -45° and the fixed point is stable; for b the
slopeis steeper than -45°, andthe pointis ungable.

Another example, with amore secure provenanceinthe biol ogical literature > 23 - 22

Xp1 =X, eXPE (1-X)] (4

, isthe equation

This again describes a population with a propensity to smple exponential growth at low densties and a tendency to decrease at high
densities. The steepness of this nonlinear behaviour istuned by the parameter r. The model is plausible for a Sngle species population

whichis regulated by an epidemic disease at high dendty 28 Thefunction F(X) of equation (4) is dightly more compli cated than that of
equation (3), but hasthe compensating advantage that [ ocal stability implies global stabililylfor all X> 0.

The forms (3) and (4) by no means exhaugt the lig of sngle-humped functions F(X) for equation (1) which can be culled from the
ecological literature. A fairly full such catal ogue is given, complete with references by May and Ogter 1 Other s milar mathemati cal

functions are given by Metropdlis et a. 16 vet other formsfor F(X) are discussed under the heading of "mathematical curiosities"
below.

3.DYNAMIC PROPERTIES OF EQUATION (1)
Possible constant, equili brium val ues (or "fixed points”) of Xin eguation (1) may be found algebraically by putting Xp1 =X =X, and
solving the resulting equati on

X* = F(X*) (5)

Anequival ent graphical methodis to find the points wherethe curve F(X) that mapsX; into X, ; intersects the 45° line, Xy, 1 = Xy which

correponds to the ideal nirvana of zero popul ation growth; see Fig. 1. For the single-hump curves di scussed above, and exemplified by
equations (3) and (4), thereare two such paints the trivial solution X = 0, and a non-trivial solution X* (which for equation (3) isX* =1
- (1/a).

The next quegtion concerns the gahility of theequilibrium point X*. Thiscan be seen =" == === to depend on the dope of the
F(X) curve at X*. Thisslope, which isillustrated by the dashedlinesin Fig. 1, can be ded gnated

A(X*) = [dF / dX]y = 4 (6)

So long as this dope lies between 45° and -45° (that is, AD peween +1 and -1), making an acute angle with the 45° ZPG line, the
equilibrium point X* will beat least|ocally stable, attracting all trajectoriesin itsneighbourhood. In equation (3), for exampl e, thisslope

is;\(l) = 2 -a: theequilibrium point istherefore stable, and attracts al| traj ectories originating in theinterval 0 <X < 1, if and only if 1 <
a< 3.

Astherelevant parameters are tuned o that the curve F(X) becomes more and more steeply humped, this stability-determining d ope at
X* may eventually steepen beyond -45° (that is, A< -1), whereupon the equilibrium point X* isnolonger gable.
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What happens next? What happens, for example, for a > 3in equation (3)?

Toanswer this quegion, it is helpful to ook at the map which relates the popul ations at successiveinterval's 2 generations apart; that is,
tolook at the function which rel ates X, , toX,. This second iterate of equation (1) canbewritten

Xup =FIFOQ)] ()

or, introducing an obvious piece of notation,

Xu2 =FO)  ®

The map so derived from equation (3) isillustrated in Figs 2and3.

Figure 2. The map relating Xipo tO X, obtained by two
iterations of equation (3). Thisfigureisfor thecase (a) of
Fig. 1, a = 2.707: thebasc fixed point is gable, and itis
the only point at which F(z)(X) intersects the 45° line

(where its slope, shown by the dashed line, is less steep
than 459.

¥

Figure3. Asfor Fig. 2, except that herea =3.414, as in
Fig. 1b. The basic fixed point is now ungable: the dope
of F(z)(x) at this point steepens beyond 45°, leading to
the appearance of two new slutions of period 2.

Population vaues which recur every second generation (that is, fixed points with period 2) may now bewritten as X* 2 and found either

algebraically from

X*Z = F(2) (X* 2) (9)
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or graphically from the intersecti on between the map F(Z)(X)and the 45° line, asshown inFigs 2 and 3. Clearly the equilibrium point X*
of equation (5) is a olution of equation (9); the basic fixed point of period 1is adegenerate case of aperiod 2 solution. We now make a

simple, but crucial, observation: the s ope of the curve FX2(X) at the paint X*, defined as A(P(x¢) and il lugtrated by the dashed lines
inFigs 2and 3, isthe square of the corresponding dope of F(X)

A () =[AD (x912 (10

This fact can now be used to make plain what happens when thefixed point X* becomes unstable. If the slope of F(X) islessthan -45°
(that is, |A(l)| <1),asillustrated by curveainFig. 1, then X* is stable. Also, from equation (10), this implies0< A2 < 1 corresponding
to the slope of F2 g x* lying between 0° and 45° asshown in Fig. 2. As long asthe fixed point X* is gable, it provides the only
non-trivial solution to equation (9). On the other hand, when A geepens beyond -45° (thet is, Pt(l)| >1), asillugrated by curve b in
Fig 1, X* becomes unstable. At the same time, from eguation (10) this implies A2 5 1, corresponding to the dope of F2 a x*

steepening beyond 45°, asshown inFig. 3. Asthis happens, the curve F(Z)(X) mugt develop a"loop”, andtwo new fixed points of period
2 appear, asillustratedinFig. 3.

In short, as the nonlinear functionF(X) in equation (1) becomes more steeply humped, the badc fixed point X* may become unstable.
At exactly the gage when this occurs, there are born two new and initialy stable fixed points of period 2, between which the system
alternatesin a gable cycle of period 2. The sort of graphical analyssindicated by Figs 1, 2 and 3, along with the equation (10), isall

that is needed to establi sh this generic result 2 2.

Asbefore, the sahility of thisperiod 2 cycl e depends on the slope of the curve F(z)(x) at the 2 points. (This slope is easily shown to be
the same at both poi nsd @, and more generalyto bethe sameat all k points on aperiod k cycle.) Furthermore, asisclear by imagining
the intermediate stages between Figs 2 and 3, this stabil ity-determi ning slope has the value A = +1 at the hirth of the 2-point cycle, and

then decreases through zero towards A=-1asthe hump in F(X) continues to steepen. Beyond this point the period 2 points will in turn
become unstable, and bifurcate to give an initialy stable cycle of period 4. Thisin turngives way to acycle of period 8, and thenceto a

hierarchy of bifurcating stable cycles of periods 16, 32, 64...., 2. In each case, the way in which a stable cycle of period k becomes
unstable, smultaneoudy hifurcating to produce a new and initialy sable cycle of period 2, is bascaly similar to the process just
adumbrated for k= 1. A more full and rigorousaccount of the material covered sofar isin ref. 1.

This "very beautiful bifurcation phenomenon’ 2 s depicted in Fig. 4, for the example equation (3). It cannot be too grongy
emphasised that the process is generic to maost functions F(X) with a hump of tunable steepness. Metropolis et a. 16 refer to this
hierarchy of cycles of periodsZnastheharmonics of thefixed point X*.

i -y | b i = N
X

Figure 4. This figure illustrates some of the stable ( )
and unstable (----) fixed points of various periods that can
arise by bifurcation processes in equation (1) in general, and
equation (3) in particular. To the left, the basc gable fixed
point becomes ungtable and gives rise by a successon of

pitchfork bifurcati ons to gabl e harmonics of period 2n; none
of these cyclesis stable beyond a = 3.5700. To theright, the
two period 3 cycles appear by tangent bifurcation: one is
initialy ungable; the other isinitially sable, but becomes

unstable and gives way to sable harmonics of period 3 ><2n,
which have a point of accumulation at a = 3.8495. Nate the
change in scale on the a axis, needed to put both examples
on the same figure. There are infinitely many other such
windows, based on cycles of higher periods
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Althoughthis process produces aninfinite sequence of cycleswith periods2” (n-> oo

Beyond this point of accumulation (for example, for a > a, in equation (3)) there are an infinite number of fixed points with different
periodicities, and an infinite number of different periodic cycles. There areal s an uncountable number of initial points Xy which give
totally aperiodic (although bounded) trajectories no matter how long the time series generated by F(X) is run out, the pattern never
repeats. These facts may be established by a variety of methods L % 22 2222 gych a §tuation, where an infinite number of different
orbits can occur, hasbeen chrigtened "chactic" by Li and Y orke?,

Asthe parameter increases beyond the critical value, atfirg all these cycles have even periods, with X alternating up and down between

values above, and values bel ow, the fixed point X*. Although these cycles may in fact be very complicated (having a non-degenerate
periodof, say, 5,726 points before repeating), they will seemtothe casua observer to berather like asomewhat "noisy" cycle of period
2. Asthe parameter value continues to increase, there comesa dage (ata = 3.6786.. for equation (3)) at which thefirg odd period cycle
appears. At first these odd cycles have very long periods, but as the parameter value continues to increase cycles with smaller and
smaller odd periods are picked up, until at last the three-point cycle appears (ata = 3.8284 . . for equation (3)). Beyond this point, there

are cycles with every integer period, as well as an uncountable number of asymptatically aperiodic trajectories Li and Yorke 2 entitle
their original proof of this result "Period Three Implies Chaos'.

The term "chaos' evokes an image of dynamical trajectories which are indistinguishable from some stochastic process. Numerical

simulations == = &= == £ of the dynamics of equation (3), (4) and other similar equations tend to confirm thisimpresson. But, for
smooth and "sensble" functions F(X) such as in equations (3) and (4), the underlying mathematical fact is that for any ecified

parameter val ue thereis one unique cycle that is stable, and that attracts essentially al initial poi ntsg' 2 (see ref. 4, appendix A, for a
simple and lucid exposition). That is, there is one cycle that "owns" amog al initial points; the remaining infinite number of other
cycles, alongwith the asymptatical ly aperiodic traj ectories, own a set of poi nts which, although uncountabl e, have measure zero.

Asis made clear by Tables 3 and 4 below, any one particular stable cycle is likely to occupy an extraordinarily narrow window of
parameter values. Thisfact, coupled with the long time it islikely to take for transients associated with theinitial conditions to damp
out, means that in practi ce the unique cycle is unlikely to be unmasked, and that a gochagtic description of the dynamicsis likely to be
appropriate, in spite of the underlying determinigic structure. This point is pursued further under the heading “practical applications”,
below.

The main messages of this section are summarised in Table 1, which <ets out the various domains of dynamical behaviour of the
equations (3) and (4) as functions of the parameters, a and r regpectively, that determine the severity of the nonlinear repponse. These
propertiescan be understood qualitatively in agraphical way, and are generic to any well behaved F(X) in equation ().

Table 1. Summary of the way various "single-hump" functions F(X), from equation (1), behave in the chaotic region, distinguishing the
dynamical properties which are generic from those which are not

The functionF(X) aX; if X< AX; ifX<1
of equation (1) ax(1- X) Xexpl(1 -X)] a(l-X);ifX>% Axl'b, if X>1

Tunable parameter a r a b
Fixed point becomes unstable 3.0000 2.0000 1.0000* 2.0000
"Chaotic" region begins
[point of accumulation of cycles of period]2 3.5700 26924 1.0000 2.0000
First odd-period cycle appears 3.6786 2.8332 1.4142 2.6180
Cycle with period 3 appears
[and therefore every integer period present] 3.8284 3.1024 1.6180 3.0000
"Chaotic" region ends 40000+ oof 2.0007 oof
Arethere stable cycles in the chaotic region? Yes Yes No No

* Below thisa value,X = 0 is stable.
+ All solutions are attracted to - oo for avalues beyond this.

$ Inpractice, as r or b becomes large enough, X will eventually be carried so low as to be effectively zero, thus producing extinction
in models of biological populations.

Wenow proceed to a more detail ed discuss on of the mathematical structure of the chactic regime for anal ytical functions, and then to
the practical problems aluded to above and to a cond deration of the behavioural peculiarities exhibited by non-analytical functions
(such as those in the two right hand columns of Table 1).

6 of 14 09/20/2004 05:09 PM



Simple mathematical models with very complicated dynamics - R.May

4. FINE STRUCTURE OF THE CHAOTIC REGIME

We have seen how the original fixed point X* bifurcates to give harmonicsof period 2". But how do new cycles of period k arise?

The general process is illugrated in Fig. 5, which shows how period 3 cycles originate. By an obvious extenson of the notation
introduced in equation (8). popul ati ons three generati ons apart are rel ated by

Xua=FO X)) (1)

If the hump in F(X) is sufficiently steep, the threefold iterati on will produce a function F(3(X) with 4 humps, as shown in Fig. 5for the
F(X) of equation (3). At fird (for a < 3.8284 . . inequation 3) the 45° line intersects thiscurve only at thesinglepoint X* (and at X = 0),

as shown by the solid curve in Fig. 5. Asthe hump in F(X) steepens, the hills and valleys in F(3)(X) become more pronounced, urtil
simultaneously thefirgt two valleys ank and thefina hill risesto touch the 45° line, and then tointercept it at 6 new points, as shown by
the dashed curve in Fig. 5. These 6 points divide into two diginct three-point cycles. As can be made plausible by imagining the

intermedi ate stages in Fig. 5, it can be shown that the gability-determining slope of F(3)(X) at three of these points has acommon value,
whichis A®) = +1 at their bi rth, and thereafter steepens beyond +1: this period 3 cycle is never gable. The slope of F(3)(X)at the other
three points begins at AG) = +1, and then decreases towards zero, resulting in a sable cycle of period 3. As F(X) continues to steepen,
the slope A for this initialy gable three-point cycle decreases beyond -1; the cycle becomes ungable, and gives rise by the

bifurcation process discussed in the previous section to stable cycles of period 6, 12, 24, .., 3 x2". Thishirth of a stable and unstable
pair of period 3 cycles, and the subsequent harmonics which arise as the initially gable cycle becomes unstable, are illugrated to the

rightof Fig. 4.

T

Figure5. Therel ationship between X3 and X obtained

by three iterations of equation (3). Thesdlid curve isfor a
= 3.7, and only intersects the 45° line once. As a
increases the hills and valleys become more pronounced.
The dashed curve is for a = 3.9, and sx new period 3
points have appeared (arranged as two cycles, each of
period 3).

There are, therefore, two bad ¢ kinds of bifurcati on processes L. 45or firg order difference equations. Truly new cycles of period k arise
inpairs (one gable, one ungable) as the hills and vall eys of higher iterates of F(X) move, respectively, up and down to intercept the 45°
line, as typified by Fig. 5. Such cycles are born at the moment when the hills and vall eys become tangent to the 45° line, and the initial

slope of the curve F(k) at the pointsis thus 200 = +1: this type of bifurcation may be called 13 atangent bifurcation or a A = +1
bifurcation. Conversely, an originally stable cycle of period k may become ungable as F(X) seepens This happens when the d ope of
FK a these period k points geepens beyond AK) = -1, whereupon a new and initialy stable cycle of period 2k is bornin the way
typified by Figs 2 and 3. This type of bifurcation may be called apitchfork bifurcation (borrowing an imagefrom theleft hand side of

Fig. 4) or a A= -1 bifurcation 12

Putting all thistogether, we conclude that as the parameters in F(X) are varied the fundamental, stable dynamical units are cycles of
bad ¢ period k, which arise by tangent bifurcation, along with their associated cascade of harmonics of periods k2n, which arise by
pitchfork bifurcation. On this basis, the constant equilibrium solution X* and the subsequent hierarchy of stable cycles of periods 2" is

merely a ecia case, albeit a congpicuoudy important one (namely k = 1), of a general phenomenon. In addition, remember 14222
that for sensible, analytical functions (such as for example, thosein equations (3) and (4)) thereis a unique sable cycle for each value
of the parameter in F(X). Theentirerange of parameter values (1 < a< 4 in equation (3), 0 < rin equati on (4)) may thus be regarded as
made up of infinitely many windows of parameter values - somelarge, some unimaginably small - each corresponding to asingl e one of
these basic dynamical units. Tables 3 and 4, below, illugtrate this notion. These windows are divided from each other by points (the
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points of accumulation of the harmonics of period k2) at which the system s truly chactic, with no attractive cycle: athough there are
infinitely many such special parameter val ues, they have measure zeroon theinterval of al val ues.

How are these various cycles arranged adong the interval of relevant parameter values? This quesion has to my knowledge been
answvered independently by at leas 6 groups of people, who have seen the problem in the context of combinatorial theory 16 @,

numerical analyd 3 H, population biology l, and dynamical sysemstheory 2231 (broadly defined).

A dmple-minded approach (which has the advantage of requiring little technical apparatus, and the disadvantage of being rather
clumsy) cond s of first answering the question, how many periodk points can there be? That is, how many diginct solutions can there
beto the equation

x =F g2 (12

If the function F(X) is sufficiently steeply humped, as it will be once the parameter values are sufficiently large, each successve
iteration doubles the number of humps, o that F*(X) has Zk_l humps. For large enough parameter val ues, al these hills and valleys

will intersect the 45° line, producing X fixed points of period k. These are liged for k = 12 in the top row of Table 2. Such alist
includes degenerate points of period k, whose period is a submultiple of k; in particular, the two period 1 points (X = 0 and X*) are
degenerate olutions of equation (12) for all k. By working from I eft to right across Table 2, these degenerate points can be subtracted
out, toleave the total number of non-degenerate points of bad ¢ periodk, aslisted inthe second row of Table 2. More sophi sticated way's

of arriving at this result aregivenel sawhere = = = == = == .

Table 2. Catalogue of the number of periodic points, and of the various cycles (with periods k = 1 up to 12), arising from equation (1)
with a single-humped function F(X)

k 123456 7 8 9 10 11 12
Possible total number of points with perlod 248163264 128256 512 1,024 2,048 4,096
Possible total number of points with non-degenerate pkriod 226 123054 126 240 504 990 2,046 4,020
Total number of cycles of periddincluding those which are degenerate and/or 2346 8 1420 36 60 108 188 352

harmonics and/or never locally stable
Total number of non-degenerate cycles (including harmonics and unstable cycles) 2123 6 9 18 30 5 99 186 335
Total number of non-degenerate, stable cycles (including harmonics) 1112 3 59 16 28 51 93 170

Total number of non-degenerate, stable cycles whose basic period isk (that is, 1-11 3 49 14 28 48 93 165
excluding harmonics)

For example, thereeventually are D=6 points with period 6. These include the two points of period 1, the period 2 "harmonic" cycle,
and the stable and unstable pair of triplets of points with period 3, for a total of 10 points whase bad ¢ period is a submultiple of 6; this
leaves 54 pointswhose basic period is 6.

The period k points are arranged into various cyclesof period k, or submulti pl es thereof, which appear in succession by either tangent
or pitchfork bifurcation as the parametersinF(X) arevaried. Thethird row in Table 2 catal ogues the total number of distinct cycles of
period k which so appear. In the fourth row 1—4, the degenerate cycles are subtracted out, to give the total number of non-degenerate
cycles of period k: these numbers must equal those of the second row divided by k. This fourth row includes the (stable) harmonics
whicharise by pitchfork bifurcation, and the pairs of stable-unstable cycles arising by tangent bifurcati on. By subtracting out the cycles
which are unstable from hirth, thetotal number of possible sable cyclesis given in row five; these figures can aso be obtained by less
pedestrian methodsS 1630 Finally we may subtract out the stable cycles which arise by pitchfork bifurcation, as harmonics of some
simpler cycle, to arrive at thefinal rowinTable 2, which lists the number of stable cycleswhose basic period is k.

Returning to the example of period 6, we have aready noted the five degenerate cycles whose periods are submultiples of 6. The
remaining 54 points are parcelled out into onecycle of period 6 which arises as the harmonic of the only gablethree-point cycle, and
four diginct pairs of period 6 cycles (that is, four initially sable ones and four ungable ones) which arise by successve tangent
bifurcations Thus, reading from the foot of the columnfor period6 inTable 2, we get the numbers 4,5, 9, 14.

Usng various labelling tricks, or techniques from combinatorial theory, it is also possible to give a generic ligt of the order in which the
various cycles appear 113,16 22 example, thebad c gablecycles of periods 3, 5, 6 (of which there arerespectively 1, 3, 4) must

appear inthe order 6, 5, 3,5, 6, 6, 5, 6: compare Tables 3 and 4. Metropolis et a. 18 give theexplicit such genericlist for al cycles of
periodk = 11
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Table 3A catalogue of the stable cycles (with basic periods up to 6) for the equation Xip1 = aXt(l - Xt)

Width of the range

a value at which: Subsequent cascade of a values over
of "harmonics' with which the basic cycle,
Period of Basiccycle Basic cycle period k2" all or one of its harmonics,
basic cycle first appears becomes unstable become unstable is attractive

1 1.0000 3.0000 3.5700 2.5700

3 3.8284 3.8415 3.8495 0.0211

4 3.9601 3.9608 3.9612 0.0011
5(a) 3.7382 3.7411 3.7430 0.0048
5(b) 3.9056 3.9061 3.9065 0.0009
5(c) 3.99026 3.99030 3.99032 0.00006
6(a) 3.6265 3.6304 3.6327 0.0062
6(b) 3.937516 3.937596 3.937649 0.000133
6(c) 3.977760 3.977784 3.977800 0.000040
6(d) 3.997583 3.997585 3.997586 0.000003

Asa corollary it follows that, given the most recent cycle to appear, it is possible (at least in principle) to catal ogue all the cycles which

have appeared up to this point. An especially €l egant way of doing thisis given by Smal e and Williams 2, who show, for example, that
when the stable cycle of period 3 first originates, thetotal number of other points with periodsk, N which have appeared by this sage

sati fy the Fibonacci series, N,=24,58, 12,19, 30,48, 77, 124, 200, 323 fork=1, 2, .., 12 thisisto be contraged with the total
number of points of period k which will eventually appear (thetop row of Table 2) as F(X) continues to steepen.

Table 4. Catalogue of the stable cycles (with basic periods up to 6) for the equation X1 =% exp[r(1- Xt)]

Width of the range

r value at which: Subsequent cascade of r values over
of "harmonics" with which the basic cycle,
Period of Basic cycle Basic cycle period k2" Al or one of its harmonics,
basic cycle first appears becomes unstable become unstable is attractive
1 0.0000 2.0000 2.6924 2.6924
3 3.1024 3.1596 3.1957 0.0933
4 3.5855 3.6043 3.6153 0.0298
5(a) 2.9161 2.9222 2.9256 0.0095
5(b) 3.3632 3.3664 3.3682 0.0050
5(c) 3.9206 3.9295 3.9347 0.0141
6(a) 27714 2.7761 2.7789 0.0075
6(b) 3.4558 3.4563 3.4567 0.0009
6(c) 3.7736 3.7745 3.7750 0.0014
6(d) 4.1797 4.1848 4.1880 0.0083

Such catal ogues of the total number of fixed points and of their order of appearance, are relatively easy to construct. For any parti cular
function F(X), the numerical task of finding the windows of parameter values wherein any one cycle or its harmonics isstable is in
contrad, relatively tedious and inel egant. Before giving such results, two critical parameter values of special dgnificance should be
menti oned.

Hoppengeadt and Hyman a have given a Smple graphical method for | ocating the parameter valuein the chaotic regime at which the
firg odd period cycle appears. Their analytic recipe is as follows. Let o be the parameter which tunes the seepness of F(X) (for
example, & = afor equation (3), o = r for equation (4)), X* (z) be thefixed point of period 1 (the non-trivial solution of equation (5)),
and X5y () the maximum value attainabl e from iterations of equation (1) (that is the value of F(X) at its hump or sationary poirt).
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Thefirg odd period cycle appears for that val ue of « which sttisfies & 31

x(a)= FD (X (@) (19)

As mentioned above, ancther critica value is that where the period 3 cycle first appears This parameter value may be found
numerically from the sal utions of thethirditerate of equation (1): for equation (3) itislda=1+ 1.!’8.

Myrberg 13 (for dl k = 10) and Metropdiis et al. E. (for al k = 7) have given numerical information about the stable cycles in
equation (3). They do not give the windows of parameter val ues, but only the Sngle val ue at which a given cycleis maximally stable;

thet iis, the val ue of a for which the stability-determining s ape of FI9(x) is zero, A = 0. Since the slope of the k-times iterated map
FK) g any point on aperiod k cycleis smply equal to the product of the dopes of F(X) at each of the points X, on thiscycle 18 A’,
the requirement A(K) = 0 implies that X = A (the stationary point of F(X), where A(Y) = 0) is one of the periodic points in question,
which considerably 9 mplifiesthe numerical calculations.

For each basic cycle of periodk (as catalogued in the last row of Table 2), it is more interesting to know the parameter values at which:
(1) thecyclefirg appears (by tangent bifurcati on); (2) the basic cycle becomes ungabl e (givingrise by success ve pitchfork bifurcations

to a cascade of harmonics of periods k2n); (3) dl the harmonics become unstable (the point of accumul ation of the period k2" cycles).

Tables 3 and 4 extend the work of May and Osterl, to give this numerical information for equations (3) and (4), reyectively. (The
pointsof accumul ation are not ground out mindlesdy, but are calculated by arapidly convergent iterative procedure, seeref. 1, appendix

A.) Someof theseresults have al so beenobtained by Gumowski and Mira32.

5. PRACTICAL PROBLEMS

Referring to the paradigmatic example of equation (3), we can now see that the parameter interval 1 < a < 4 is made up of a
one-dimendg ona mosaic of infinitely many windows of a-values, in each of which a unique cycle of period k, or one of its harmonics,
attracts essentially al initial points Of thesewindows, that for 1 <a <3.5700 .. corresponding to k =1 and its harmonicsis by far the
widest and mast congpicuous. Beyond thefirg point of accumulation, it can be seen from Table 3 that these windows are narrow, even
for cycles of quite low periods, and the windows rapid'y become very tiny ask increases

As a result, there develops a dichotomy between the underlying mathematical behaviour (which is exactly determinable) and the
"commonsense" concl usions that one would draw from numerical smulations. If the parameter a is held congant at one value in the
chaatic region, and equation (3) iterated for an arbitrarily large number of generations, adensity plot of the observed valuesof X on the

interval 0 to 1 will settle into k equal sikes (more precisely, delta functions) corresponding to the k points on the stable cycle
appropriate to this a-value. But for most a-values this cycle will have a fairly large period, and moreover it will typicaly take many
thousands of generations beforethe transients associated with the initial conditions are damped out: thus the dendty plot produced by
numerical simulations usually looks like asample of points taken from some conti nuousdistri buti on.

An especialy interesing set of numerical computations are due to Hoppensteadt (personal communication) who has combined many
iterations to produce a dendty plot of X, for each one of a sequence of a-values gradually increasing from 3.5700 . . to 4. Theseresults

aredisplayed as a movie. Ascan be expected from Table 3, some of the more conspicuouscycles do show up as sets of delta functions
the 3-cycle and its first few harmonics; thefirg 5-cycle; thefirst 6-cycle. But for mog values of a the dendty plot looks like the sample
function of arandom process This is particularly true in the neighbourhood of the a-value where the firg odd cycle appears (a =
3.6786..), and again in the neighbourhood of a = 4: thisis not surprisng, because each of these locations is a point of accumulation of
points of accumulation. Despite the underlying discontinuous changes in the periodicities of the stable cycles the observed density
pattern tends to vary smoothly. For example, as a increases toward the value at which the 3-cycle appears, the density plot tends to
concentrate around three points, and it smoothly diffuses away from these three points after the 3-cycle and al its harmonics become
unstable.

| think the most interesing mathematical problem liesin desgning a way to construct some approxi mate and “effectively continuous'
density spectrum, despite the fact that the exact dengty function is determinable and is aways a set of delta functions Perhaps such

techniques have already been developed in ergodic theory < (which lies at the foundations of gatistical mechanics), as for example in
the use of "coarse-grai ned observers”. | donot know.

Such an effectively sochagic description of the dynamical properties of equation (4) for larger has been provided &3, albeit by tactical
tricks peculiar to that equation rather than by any general method. As r increases beyond about 3, the trajectories generated by this
equationare, to an increas ngly good approxi mati on, al most periodic with period (1 /r) exp(r - 1).

Theopinion | amairing in this section is that althoughthe exqui dte fine structure of the chactic regimeis mathemati cally fasci nating, it
isirrelevant for mog practical purposes. What seems called for is some effectively gochagic description of the deterministi c dynamics.
W hereas the various gatements about the different cycles and their order of appearance can be made in generic fashion, such stochastic
decription of the actual dynamics will be quite different for different F(X): witness the difference between the behaviour of equation
(4),whichfor larger is amog periodic " outbreaks" gpaced many generati ons apart, versus the behavi our of equation (3), which for a ->
4 isnot very different from aseries of Bernoulli coin flips.
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6. MATHEMATICAL CURIOSITIES

Asdiscussed above, the essential reason for the exi sence of a succession of stable cycles throughout the " chaatic” regimeis that as each
new pair of cyclesisborn by tangent bifurcation (see Fig. 5), one of them is at first stable, by virtue of the way the smoothly rounded
hills and valleys intercept the 45° line. For analytical functions F(X), the only parameter val ues for which the density plat or "invariant
measure” is continuous and truly ergodic are at the points of accumulation of harmonics, which divide one stable cycle from the next.
Such exceptional parameter values have found applications, for example, in the use of equation (3) with a = 4 as a random number

generator 34,35 it hasa conti nuousdensity function proportional to [X(1- >()]']J2 intheinterval 0<X < 1

Non-and ytical functionsF(X) in which the hump isin facta gike provide an interesting gpecial case. Here we may imagine sikey hills
and valleys moving to intercept the 45° line in Fig. 5, and it may be that both the cycles born by tangent bifurcation are ungabl e from

the outset (one having AK) 5 1, the other A < -1), for al k> 1 There are then no gable cycles in the chactic regime, whichis
thereforeliterally chactic with acontinuous and truly ergodic density disribution function.

One simple exampleis provided by
XtJrl =aXt; if Xt< 1/2
Xt+1 =a(l -X[) ; |th> 12 (14)

defined ontheinterval 0 <X < 1 For 0< a< 1, al trgectories are attracted to X = 0; for 1 < a < 2, there areinfinitely many periodic
orhits, along with an uncountable number of aperiodic traj ectories, none of which are locally sable. The first odd period cycle appears

ata= v’Z, and al integer periods are represented beyond a = (1 + 1..1"5)/2. Kac® has given a careful discussion of the caea = 2
Another example, this time with an extend ve biol ogical pedigreel '§, is the equation

)<t+1:)txt;if)<t<l

_ 1-b. .
Xup = AX X >1 (15)

If A > 1 this possesses aglobally stable equillibrium point for b < 2. For b > 2 thereis again true chaos, with no stable cycles the first

odd cycle appearsat b= (3 + 1.!’5)/2, and all integer periods are present beyond b = 3. The dynamical properties of equations (14) and
(15) are summarisedto theright of Table 2.

The absence of anal yticity isa necessary, but not a sufficient, condition for truly random behaviour 3L cong der, for example,

X1 = @12 X if X <2
X =aX (@-X);if X, >% (16)

Thisis the parabola of equation (3) and Fig. 1, but with the left hand half of F(X) flattened into a sraight line. This equation does

possesswindows of avalues, each with its own stable cycle, as described generically above. The stahility-determining d opes AK) vary,
however, discontinuously with the parametera, and the widthsof the Smpler gabl e regions are narrower than for equati on (3): the fixed
point becomes unstable at a= 3; the point of accumul ati on of the subsequent harmonicsisat a= 3.27 . .; thefirst odd cycle appears at a
=3.44. ; the3-pointcycle ata= 3.67. . (compare thefirst coumnin Table 1).

These eccentricities of behaviour manifesed by non-analytical functions may be of interes for exploring forma quegions in ergodic
theory. | think, however, that they have no relevance to models in the bioogical and social sciences where functions such as F(X)

should be analytical. This view is elaborated elsewhereﬂ.

Xoy =A% 1+ an

This has been used to fit a cond derable amount of data on insect popul aions 2 32, 1ts gahility behaviour, as a function of the two
parameters A and 7 isillustrated inFig. 6. Noticethat for A< 7.39. .thereisaglobal ly stable equilibrium point for all #; for 7.39. . <
X <12.50. . thisfixed point becomes unstable for sufficiently large #, bifurcating to astable 2-paint cycle which is the sol ution for all
larger #; as increases through therange 12.50 . . < A < 14.77 . . various other harmonics of period 2" appear in turn. The hierarchy of
bifurcating cycles of period 2Misthus truncated, and the point of accumul ati on and subsequent regime of chaosis not achi eved (even for
arbitrarily large ) until A> 14.77...
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Figure6. The slid lines demarcate the stability domains
for the dendty dependence parameter, #, and the
population growth rate, A, in equation (17); the dashed
line shows where 2-point cycles give way to higher cycles

of period 2", The lid circles come from analyses of life
table data on field populations, and the open circles from
| aboratory popul ations (from ref. 3, after ref. 39).

7. APPLICATIONS

Thefact that the simple and deterministi c equation (1) can possessdynamical trajectorieswhich look like some sort of random noise has
disturbing practical implications It means, for example, that apparently erratic fluctuationsin the census data for an animal popul ation
need not necessarily betoken either the vagaries of an unpredictable environment or sampling errors: they may smply derive from a

rigidy determinigtic population growth rel ationship such asequation (1). This point is di scussed more fully and carefully €l sewhere;.

Alternatively, it may be observed that in the chaatic regime arbitrarily close initial conditions can lead to trajectories which, after a
sufficiently long time, diverge widely. This means that, even if we have a simple model in which al the parameters are determined
exactly, long term prediction is nevertheless imposs ble. In ameteorological context, Lorenz 22 has cal led this general phenomenon the
"butterfly effect’: even if the atmasphere could be described by a determinigic model in which all parameters were known, the
fluttering of abutterfly’s wingscould alter theinitial conditions, and thus (in the chaatic regime) ater the long term predi ction.

Fluid turbulence provides a classic example where, as a parameter (the Reynolds number) is tuned in a st of determinigtic equations
(the Navier-Stokes equations), the motion can undergo an abrupt trangtion from some gabl e configuration (for example, laminar fl ow)
intoan apparently sochagtic, chaotic regime. Various models, based on the Navi er-Stokes differential equations, have been proposed as
mathematical metaphors for this process 1540 41 |y 4 recent review of the theory of turbulence, Martin 22 has observed that the
one-dimensona difference equation (1) may be useful in this context. Compared with the earlier models 15 40, ﬂ, it has the
disadvantage of being even more abstractly metaphorical, and the advantage of having a spectrum of dynamical behaviour which is
more richly complicatedyet more amenabl etoanalytical investi gation.

A more down-to-earth application is possible in the use of equation (1) to fit datal’ 23363948 on biological populations with

discrete, non-overl apping generations, as is the case for many temperate zone arthropods. Figure 6 shows the parameter values A and &
that are estimated 22 for 24 natural populations and 4 laboratory populations when equation (17) is fitted to the available data. The

figurealso shows the theoretical stability domains a stable point; its stabl e harmonics (stable cycles of period 2™); chaos. The natural
popul ati ons tend to have stabl e equilibrium point behaviour. The laboratory populations tend to show ostill atory or chaotic behaviour;
their behaviour may be exaggeratedy nonlinear because of the absence, in alaboratory setting, of many natural mortality factors It is
perhaps suggedive that the most oscillatory natural population (labelled A in Fig. 6) is the Colorado potato beetle, whose present
rel ationship with its hogt plant lacks an evolutionary pedigree. These remarks are only tentative, and mug be treated with caution for
severa reasons. Two of the main caveats are that there aretechnical difficulties in selecting and reducing the data, and that there are no
singl e pecies popul ations in the natural world: to obtain aone-dimend onal difference equati on by replacing apopul ation’s interactions

withits biological and physical environment by pass ve parameters(such as A and 7) may dogreat vio enceto the reality.

Some of themany other areaswhere these ideas have found applications were al luded to in the second section, above2 1L Oneaim of
thisreview articleis toprovoke applicationsin yet other fields
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8. RELATED PHENOMENA IN HIGHER DIMENSIONS

Pairs of coupled, firg-order difference equations (equivalent to a sngle second-order equation) have been investigated in several

contexts & 44 - 4—6, particularly in the gudy of temperate zone arthropod prey-predator s‘,/stemsg -4 2,47 |1 these two-di mensional

systems, the compli cations in the dynamical behaviour are further compounded by such facts as (1) even for analytical functions, there
can be truly chaotic behaviour (as for eguations (14) and (15)), corresponding to so-called "strange attractors'; and (2) two or more

different gabl e states (for example, a sable point and astable cycle of period 3) can occur together for the same parameter val uesé. In
addition, the manifestation of these phenomena usualy requires less severe nonlinearities (less steeply humped F(X)) than for the
one-dimend onal case.

Similar systems of fird-order ordinary differential equations, or two coupled first-order differential equations, have much smpler

dynamical behaviour, made up of stable and unstabl e points and limit cycl &84—8. This is bas call y because i n continuous two-di mensional
systems the inside and outside of closed curves can be diginguished; dynamic trajectories cannot cross each other. The dtuation
becomes qualitati vely more complicated and in many way's anal ogous to firs-order difference equations when one moves to systems of
three or more coupled, first-order ordinary differential equations (that is three-dimensiona sysems of ordinary differentia equations).
Scanlon (persona communi cation) has argued that chactic behaviour and "strange attractors', that is solutions which are neither points

nor periodic orbits E, are typical of such systems. Some well studied examples arise in models for reaction-diffuson sysemsin

chemistry and biology @, and in the model's of Lorenz 12 (three di mensions) and Ruelle and Takens 22 (four dimensions) referred to
above. The analys s of these systems is, by virtue of their higher dimensionality, much less trangparent than for equation (2).

An explicit and rather surprising example of a system which has recently been sudied from this viewpoint is the ordinary differential
equations used in ecol ogy to describe competing species For one or two species these sysems are very tame: dynamic trajectories will

converge on some gable equilibrium point (which may represent coexistence, or one or both species becoming extinct). As Smal ei)
has recently shown, however, for 3 or more species these general equations can, in a certain reasonable and well-defined sense, be

compatible with any dynamical behaviour. Smal ¢s2 discussion is generic and abstract: aspecific sudy of thevery peculiar dynamics
which can be exhibited by the familiar Lotka-Volterraequations once there are 3 competitors isgiven by May and Leonard a1
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