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SIMPLE MATHEMATICAL MODELS WITH VERY 
COMPLICATED DYNAMICS

Robert M. May*

Abstract. First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even
though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of
stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of. the fine structure of the trajectories, and some concerned with the practical implications and applications. This
is an interpretive review of them.

Table of Contents

 INTRODUCTION

 FIRST-ORDER DIFFERENCE EQUATIONS

 DYNAMIC PROPERTIES OF EQUATION (1)

 FINE STRUCTURE OF THE CHAOS

 PRACTICAL PROBLEMS

 MATHEMATICAL CURIOSITIES

 APPLICATIONS

 RELATED PHENOMENA IN HIGHER DIMENSIONS

 CONCLUSION

 REFERENCES

* King’s College Research Centre, Cambridge CB2 1ST; on leave front Biology Department, Princeton University, Princeton 08540.

1. INTROUCTION

There are many situations, in many disciplines, which can be described, at least to a crude first approximation, by a simple first-order
difference equation. Studies of the dynamical properties of such models usually consist of finding constant equilibrium solutions, and
then conducting a linearised analysis to determine their stability with respect to small disturbances: explicitly nonlinear dynamical
features are usually not considered.

Recent studies have, however, shown that the very simplest nonlinear difference equations can possess an extraordinarily rich spectrum
of dynamical behaviour, from stable points, through cascades of stable cycles, to a regime in which the behaviour (although fully
deterministic) is in many respects "chaotic", or indistinguishable from the sample function of a random process.

This review article has several aims.

First, although the main features of these nonlinear phenomena have been discovered and independently rediscovered by several people,
I know of no source where all the main results are collected together. I have therefore tried to give such a synoptic account. This is done
in a brief and descriptive way, and includes some new material: the detailed mathematical proofs are to be found in the technical
literature, to which signposts are given.

Second, I indicate some of the interesting mathematical questions which do not seem to be fully resolved, Some of these problems are of
a practical kind, to do with providing a probabilistic desciiption for trajectories which seem random, even though their underlying
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structure is deterministic. Other problems are of intrinsic mathematical interest, and treat such things as the pathology of the bifurcation
structure, or the truly random behaviour, that can arise when the nonlinear function F(X) of equation (1) is not analytical. One aim here
is to stimulate research on these questions, particularly on the empirical questions which relate to processing data.

Third, consideration is given to some fields where these notions may find practical application. Such applications range from the
abstractly metaphorical (where, for example, the transition from a stable point to "chaos" serves as a metaphor for the onset of
turbulence in a fluid), to models for the dynamic behaviour of biological populations (where one can seek to use field or laboratory data
to estimate the values of the parameters in the difference equation).

Fourth, there is a very brief review of the literature pertaining to the way this spectrum of behaviour - stable points, stable cycles, chaos
- can arise in second or higher order difference equations (that is, two or more dimensions; two or more interacting species), where the
onset of chaos usually requires less severe nonlinearities. Differential equations are also surveyed in this light; it seems that a
three-dimensional system of first-order ordinary differential equations is required for the manifestation of chaotic behaviour.

The review ends with an evangelical plea for the introduction of these difference equations into elementary mathematics courses, so that
students’ intuition may be enriched by seeing the wild things that simple nonlinear equations can do.

2. FIRST-ORDER DIFFERENCE EQUATIONS

One of the simplest systems an ecologist can study is a seasonally breeding population in which generations do not overlap 1 - 4. Many
natural populations, particularly among temperate zone insects (including many economically important crop and orchard pests), are of
this kind, In this situation, the observational data will usually consist of information about the maximum, or the average, or the total
population in each generation. The theoretician seeks to understand how the magnitude of the population in generation t+1, Xt+1, is

related to the magnitude of the population in the preceding generation t, Xt: such a relationship may be expressed in the general form

Xt+1 = F(Xt)         (1)

The function F(X) will usually be what a biologist calls "density dependent", and a mathematician calls nonlinear; equation (1) is then a
first-order, nonlinear difference equation.

Although I shall henceforth adopt the habit of referring to the variable X as "the population", there are countless situations outside
population biology where the basic equation (1), applies. There are other examples in biology, as, for example in genetics 5, 6 (where the
equation describes the change in gene frequency in time) or in epidemiology 7 (with X the fraction of the population infected at time t).

Examples in economics include models for the relationship between commodity quantity and price 8, for the theory of business cycles 9,
and for the temporal sequences generated by various other economic quantities 10. The general equation (1) also is germane to the social

sciences 11, where it arises, for example, in theories of learning (where X may be the number of bits of information that can be
remembered after an interval t), or in the propagation of rumours in variously structured societies (where X is the number of people to
have heard the rumour after time t). The imaginative reader will be able to invent other contexts for equation (1).

In many of these contexts, and for biological populations in particular, there is a tendency for the variable X to increase from one
generation to the next when it is small,  and for it to decrease when it is large. That is, the nonlinear function F(X) often has the following
properties: F(0)=0; F(X) increases monotonically as X increases through the range 0 < X < A (with F(X) attaining its maximum value at
X = A); and F(X) decreases monotonically as X increases beyond X = A. Moreover, F(X) will usually contain one or more parameters
which "tune" the severity of this nonlinear behaviour; parameters which tune the steepness of the hump in the F(X) curve. These
parameters will typically have some biological or economic or sociological significance.

A specific example is afforded by the equation 1, 4, 12 - 23

Nt+1 = Nt (a - b Nt)         (2)

This is sometimes called the "logistic" difference equation. In the limit b = 0, it describes a population growing purely exponentially (for
a > 1); for b  0, the quadratic nonlinearity produces a growth curve with a hump, the steepness of which is tuned by the parameter a.
By writing X = bN/a, the equation may be brought into canonical form 1, 4, 12 - 23

Xt+1 = aXt  (1 - Xt)         (3)

In this form, which is illustrated in Fig. 1, it is arguably the simplest nonlinear difference equation. I shall use equation (3) for most of
the numerical examples and illustrations in this article. Although attractive to mathematicians by virtue of its extreme simplicity, in
practical applications equation (3) has the disadvantage that it requires X to remain on the interval 0 < X < 1; if X ever exceeds unity,
subsequent iterations diverge towards -  (which means the population becomes extinct). Furthermore, F(X) in equation (3) attains a
maximum value of a/4 (at X = 1/2); the equation therefore possesses non-trivial dynamical behaviour only if a < 4. On the other hand,
all trajectories are attracted to X = 0 if a <  1. Thus for non-trivial dynamical behaviour we require 1 < a < 4; failing this, the population
becomes extinct.  



Simple mathematical models with very complicated dynamics - R.May

3 of 14 09/20/2004 05:09 PM

Figure 1. A typical  form for the relationship between
X

t+1
 and X

t
 described by equation (1). The curves are for

equation (3), with a = 2.707 (a); and a = 3.414 (b). The
dashed l ines indicate the slope at the "fixed points" where
F(X) intersects the 45° line: for the case a this slope is less
steep than -45° and the fixed point is stable; for b the
slope is steeper than -45°, and the point is unstable.

Another example, wi th a more secure provenance in the biological  li terature 1, 23 - 27, is the equation

Xt+1 = Xt exp[r (1 - Xt)]         (4)

This again describes a population with a propensi ty to simple exponential  growth at low densi ties, and a tendency to decrease at high
densities. The steepness of this nonl inear behaviour is tuned by the parameter r. The model is plausible for a single species population
which is regulated by an epidemic disease at high densi ty 28. The function F(X) of equation (4) is sl ightly more complicated than that of
equation (3), but has the compensating advantage that local  stabil ity impl ies global  stabi li ty1 for al l X > 0.

The forms (3) and (4) by no means exhaust the list of single-humped functions F(X) for equation (1) which can be culled from the

ecological li terature. A fai rly ful l such catalogue is given, complete with references, by May and Oster 1. Other similar mathematical
functions are given by Metropol is et al . 16. Yet other forms for F(X) are discussed under the heading of "mathematical curiosities"
below.

3. DYNAMIC PROPERTIES OF EQUATION (1)

Possible constant, equi librium values (or "fixed points") of X in equation (1) may be found algebraically by putting Xt+1 = Xt  = X* , and

solving the resul ting equation

X* = F(X* )         (5)

An equivalent graphical  method is to find the points where the curve F(X) that maps Xt into Xt+1 intersects the 45° l ine, Xt+1 = Xt which
corresponds to the ideal ni rvana of zero population growth; see Fig. 1. For the single-hump curves discussed above, and exempl ified by
equations (3) and (4), there are two such points: the trivial solution X = 0, and a non-trivial  solution X*  (which for equation (3) is X*  = 1
- (1/a).

The next question concerns the stabi li ty of the equi librium point X* . This can be seen 24, 25, 19 - 21, 1, 4 to depend on the slope of the
F(X) curve at X* . This slope, which is i llustrated by the dashed l ines in Fig. 1, can be designated

(X*) = [dF / dX]x = x*         (6)

So long as this slope l ies between 45° and -45° (that is, (1) between +1 and -1), making an acute angle wi th the 45° ZPG l ine, the
equi librium point X*  wi ll  be at least local ly stable, attracting all  trajectories in its neighbourhood. In equation (3), for example, this slope

is (1) = 2 - a: the equi librium point is therefore stable, and attracts al l trajectories originating in the interval  0 < X < 1, if and only i f 1 <
a < 3.

As the relevant parameters are tuned so that the curve F(X) becomes more and more steeply humped, this stabil ity-determining slope at
X*  may eventually steepen beyond -45° (that is, (1) < -1), whereupon the equi librium point X*  is no longer stable.
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What happens next? What happens, for example, for a > 3 in equation (3)?

To answer this question, i t is helpful to look at the map which relates the populations at successive intervals 2 generations apart; that is,
to look at the function which relates Xt+2 to Xt. This second i terate of equation (1) can be written

Xt+2 = F[F(Xt)]         (7)

or, introducing an obvious piece of notation,

Xt+2 = F(2)(Xt)         (8)

The map so derived from equation (3) is illustrated in Figs 2 and 3.

Figure 2. The map relating Xt+2 to Xt, obtained by two

i terations of equation (3). This figure is for the case (a) of
Fig. 1, a = 2.707: the basic fixed point is stable, and it is

the only point at which F
(2)

(X) intersects the 45° l ine
(where i ts slope, shown by the dashed line, is less steep
than 45°).

Figure 3. As for Fig. 2, except that here a = 3.414, as in
Fig. 1b. The basic fixed point is now unstable: the slope

of F(2)(X) at this point steepens beyond 45°, leading to
the appearance of two new solutions of period 2.

Population values which recur every second generation (that is, fixed points wi th period 2) may now be written as X* 2, and found ei ther

algebraical ly from

X*2 = F(2) (X* 2)         (9)
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or graphically from the intersection between the map F(2)(X) and the 45° line, as shown in Figs 2 and 3. Clearly the equil ibrium point X*
of equation (5) is a solution of equation (9); the basic fixed point of period 1 is a degenerate case of a period 2 solution. We now make a

simple, but crucial, observation 1: the slope of the curve F(2)
(X) at the point X* , defined as (2)(X* ) and il lustrated by the dashed l ines

in Figs 2 and 3, is the square of the corresponding slope of F(X)

(2) (X* ) = [ (1) (X*)]2         (10)

This fact can now be used to make plain what happens when the fixed point X*  becomes unstable. If the slope of F(X) is less than -45°
(that is, | (1)| < 1), as i llustrated by curve a in Fig. 1, then X*  is stable. Also, from equation (10), this implies 0 < (2) < 1 corresponding
to the slope of F(2) at X*  lying between 0° and 45°, as shown in Fig. 2. As long as the fixed point X*  is stable, i t provides the only

non-trivial solution to equation (9). On the other hand, when (1) steepens beyond -45° (that is, | (1)| > 1), as il lustrated by curve b in
Fig 1, X*  becomes unstable. At the same time, from equation (10) this implies (2) > 1, corresponding to the slope of F(2) at X*
steepening beyond 45°, as shown in Fig. 3. As this happens, the curve F(2)(X) must develop a " loop", and two new fixed points of period
2 appear, as i llustrated in Fig. 3.

In short, as the nonlinear function F(X) in equation (1) becomes more steeply humped, the basic fixed point X*  may become unstable.
At exactly the stage when this occurs, there are born two new and ini tially stable fixed points of period 2, between which the system
al ternates in a stable cycle of period 2. The sort of graphical analysis indicated by Figs 1, 2 and 3, along wi th the equation (10), is al l

that is needed to establish this generic result 1, 4.

As before, the stabi li ty of this period 2 cycle depends on the slope of the curve F(2)
(X) at the 2 points. (This slope is easily shown to be

the same at both points 1, 20, and more generally to be the same at al l k points on a period k cycle.) Furthermore, as is clear by imagining
the intermediate stages between Figs 2 and 3, this stabil ity-determining slope has the value  = +1 at the bi rth of the 2-point cycle, and
then decreases through zero towards  = -1 as the hump in F(X) continues to steepen. Beyond this point the period 2 points wil l in turn
become unstable, and bifurcate to give an ini tially stable cycle of period 4. This in turn gives way to a cycle of period 8, and thence to a
hierarchy of bi furcating stable cycles of periods 16, 32, 64,..., 2n. In each case, the way in which a stable cycle of period k becomes
unstable, simul taneously bi furcating to produce a new and ini tially stable cycle of period 2k, is basically simi lar to the process just
adumbrated for k = 1. A more full  and rigorous account of the material covered so far is in ref. 1.

This "very beautiful bi furcation phenomenon" 22 is depicted in Fig. 4, for the example equation (3). It cannot be too strongly
emphasised that the process is generic to most functions F(X) wi th a hump of tunable steepness. Metropolis et al . 16 refer to this

hierarchy of cycles of periods 2n as the harmonics of the fixed point X* .

Figure 4. This figure i llustrates some of the stable ( ___ )
and unstable (----) fixed points of various periods that can
arise by bi furcation processes in equation (1) in general, and
equation (3) in particular. To the left, the basic stable fixed
point becomes unstable and gives rise by a succession of

pitchfork bifurcations to stable harmonics of period 2n; none
of these cycles is stable beyond a = 3.5700. To the right, the
two period 3 cycles appear by tangent bifurcation: one is
ini tially unstable; the other is ini tially stable, but becomes

unstable and gives way to stable harmonics of period 3 × 2n,
which have a point of accumulation at a = 3.8495. Note the
change in scale on the a axis, needed to put both examples
on the same figure. There are infinitely many other such
windows, based on cycles of higher periods.
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Although this process produces an infini te sequence of cycles with periods 2n (n -> 

Beyond this point of accumulation (for example, for a > ac in equation (3)) there are an infinite number of fixed points wi th di fferent

periodicities, and an infini te number of different periodic cycles. There are also an uncountable number of initial  points X0 which give

totally aperiodic (al though bounded) trajectories; no matter how long the time series generated by F(X) is run out, the pattern never
repeats. These facts may be established by a variety of methods 1, 4, 20, 22, 29. Such a si tuation, where an infinite number of different
orbi ts can occur, has been christened "chaotic" by Li  and Yorke20.

As the parameter increases beyond the cri tical value, at fi rst al l these cycles have even periods, wi th Xt al ternating up and down between

values above, and values below, the fixed point X* . Al though these cycles may in fact be very complicated (having a non-degenerate
period of, say, 5,726 points before repeating), they wi ll  seem to the casual observer to be rather like a somewhat "noisy" cycle of period
2. As the parameter value continues to increase, there comes a stage (at a = 3.6786.. for equation (3)) at which the fi rst odd period cycle
appears. At first these odd cycles have very long periods, but as the parameter value continues to increase cycles with smal ler and
smaller odd periods are picked up, unti l at last the three-point cycle appears (at a = 3.8284 . . for equation (3)). Beyond this point, there
are cycles wi th every integer period, as well  as an uncountable number of asymptotical ly aperiodic trajectories: L i and Yorke 20 entitle
thei r original  proof of this result "Period Three Impl ies Chaos".

The term "chaos" evokes an image of dynamical trajectories which are indistinguishable from some stochastic process. Numerical
simulations 12, 15, 21, 23, 25 of the dynamics of equation (3), (4) and other simi lar equations tend to confirm this impression. But, for
smooth and "sensible" functions F(X) such as in equations (3) and (4), the underlying mathematical  fact is that for any specified

parameter value there is one unique cycle that is stable, and that attracts essentially al l initial  points 22, 29 (see ref. 4, appendix A, for a
simple and lucid exposition). That is, there is one cycle that "owns" almost all  ini tial points; the remaining infini te number of other
cycles, along with the asymptotical ly aperiodic trajectories, own a set of points which, al though uncountable, have measure zero.

As is made clear by Tables 3 and 4 below, any one particular stable cycle is l ikely to occupy an extraordinarily narrow window of
parameter values. This fact, coupled with the long time it is l ikely to take for transients associated wi th the ini tial conditions to damp
out, means that in practice the unique cycle is unl ikely to be unmasked, and that a stochastic description of the dynamics is likely to be
appropriate, in spi te of the underlying deterministic structure. This point is pursued further under the heading "practical appl ications",
below.

The main messages of this section are summarised in Table 1, which sets out the various domains of dynamical  behaviour of the
equations (3) and (4) as functions of the parameters, a and r respectively, that determine the severi ty of the nonl inear response. These
properties can be understood qual itatively in a graphical way, and are generic to any wel l behaved F(X) in equation (1).

Table 1. Summary of the way various "single-hump" functions F(X), from equation (1), behave in the chaotic region, distinguishing the
dynamical properties which are generic from those which are not

The function F(X) aX; if X < ½ X; if X < 1

of equation (1) aX(1 - X) X exp[r(1 - X)] a(1 - X); if X > ½ X1-b; if X > 1

Tunable parameter a r a b

Fixed point becomes unstable 3.0000 2.0000 1.0000* 2.0000

"Chaotic" region begins

[point of accumulation of cycles of period 2n] 3.5700 2.6924 1.0000 2.0000

First odd-period cycle appears 3.6786 2.8332 1.4142 2.6180

Cycle with period 3 appears

[and therefore every integer period present] 3.8284 3.1024 1.6180 3.0000

"Chaotic" region ends 4.0000
� �

2.000
� �

Are there stable cycles in the chaotic region? Yes Yes No No

* Below this a value, X = 0 is stable.
�
 All solutions are attracted to -  for a values beyond this.

�
 In practice, as r or b becomes large enough, X will eventually be carried so low as to be effectively zero, thus producing extinction

in models of biological populations.

We now proceed to a more detailed discussion of the mathematical  structure of the chaotic regime for analytical  functions, and then to
the practical problems alluded to above and to a consideration of the behavioural peculiarities exhibi ted by non-analytical  functions
(such as those in the two right hand columns of Table 1).
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4. FINE STRUCTURE OF THE CHAOTIC REGIME

We have seen how the original fixed point X*  bi furcates to give harmonics of period 2n. But how do new cycles of period k arise?

The general process is il lustrated in Fig. 5, which shows how period 3 cycles originate. By an obvious extension of the notation
introduced in equation (8). populations three generations apart are related by

Xt+3 = F(3) (Xt)         (11)

If the hump in F(X) is sufficiently steep, the threefold iteration wil l produce a function F(3)(X) with 4 humps, as shown in Fig. 5 for the
F(X) of equation (3). At fi rst (for a < 3.8284 . . in equation 3) the 45° line intersects this curve only at the single point X* (and at X = 0),

as shown by the solid curve in Fig. 5. As the hump in F(X) steepens, the hi lls and valleys in F(3)
(X) become more pronounced, until

simultaneously the fi rst two val leys sink and the final  hil l rises to touch the 45° l ine, and then to intercept i t at 6 new points, as shown by
the dashed curve in Fig. 5. These 6 points divide into two distinct three-point cycles. As can be made plausible by imagining the
intermediate stages in Fig. 5, it can be shown that the stabi li ty-determining slope of F(3)(X) at three of these points has a common value,
which is (3) = +1 at thei r bi rth, and thereafter steepens beyond +1: this period 3 cycle is never stable. The slope of F(3)(X) at the other

three points begins at (3) = +1, and then decreases towards zero, resul ting in a stable cycle of period 3. As F(X) continues to steepen,
the slope (3) for this ini tially stable three-point cycle decreases beyond -1; the cycle becomes unstable, and gives rise by the
bifurcation process discussed in the previous section to stable cycles of period 6, 12, 24, ..., 3 × 2n. This bi rth of a stable and unstable
pair of period 3 cycles, and the subsequent harmonics which arise as the initial ly stable cycle becomes unstable, are il lustrated to the
right of Fig. 4.

Figure 5. The relationship between Xt+3 and Xt, obtained

by three iterations of equation (3). The sol id curve is for a
= 3.7, and only intersects the 45° line once. As a
increases, the hi lls and val leys become more pronounced.
The dashed curve is for a = 3.9, and six new period 3
points have appeared (arranged as two cycles, each of
period 3).

There are, therefore, two basic kinds of bifurcation processes 1, 4 for fi rst order di fference equations. Truly new cycles of period k arise
in pairs (one stable, one unstable) as the hi lls and valleys of higher i terates of F(X) move, respectively, up and down to intercept the 45°
l ine, as typified by Fig. 5. Such cycles are born at the moment when the hi lls and valleys become tangent to the 45° l ine, and the initial

slope of the curve F(k) at the points is thus (k) = +1: this type of bi furcation may be called 1, 4 a tangent bifurcation or a  = +1
bifurcation. Conversely, an original ly stable cycle of period k may become unstable as F(X) steepens. This happens when the slope of
F(k) at these period k points steepens beyond (k) = -1, whereupon a new and initial ly stable cycle of period 2k is born in the way
typified by Figs 2 and 3. This type of bi furcation may be called a pitchfork bifurcation (borrowing an image from the left hand side of
Fig. 4) or a  = -1 bifurcation 1, 4.

Putting al l this together, we conclude that as the parameters in F(X) are varied the fundamental , stable dynamical uni ts are cycles of

basic period k, which arise by tangent bifurcation, along wi th thei r associated cascade of harmonics of periods k2n, which arise by
pitchfork bi furcation. On this basis, the constant equil ibrium solution X*  and the subsequent hierarchy of stable cycles of periods 2n is
merely a special  case, albeit a conspicuously important one (namely k = 1), of a general phenomenon. In addi tion, remember 1, 4, 22, 29

that for sensible, analytical functions (such as, for example, those in equations (3) and (4)) there is a unique stable cycle for each value
of the parameter in F(X). The enti re range of parameter values (1 < a < 4 in equation (3), 0 < r in equation (4)) may thus be regarded as
made up of infinitely many windows of parameter values - some large, some unimaginably smal l - each corresponding to a single one of
these basic dynamical  uni ts. Tables 3 and 4, below, il lustrate this notion. These windows are divided from each other by points (the
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points of accumulation of the harmonics of period k2n) at which the system is truly chaotic, with no attractive cycle: although there are
infini tely many such special parameter values, they have measure zero on the interval of al l values.

How are these various cycles arranged along the interval  of relevant parameter values? This question has to my knowledge been

answered independently by at least 6 groups of people, who have seen the problem in the context of combinatorial  theory 16, 30,
numerical analysis13, 14, population biology 1, and dynamical systems theory 22, 31 (broadly defined).

A simple-minded approach (which has the advantage of requiring li ttle technical apparatus, and the disadvantage of being rather
clumsy) consists of first answering the question, how many period k points can there be? That is, how many distinct solutions can there
be to the equation

X*k = F(k) (X* k)?         (12)

If the function F(X) is sufficiently steeply humped, as i t wi ll  be once the parameter values are sufficiently large, each successive

i teration doubles the number of humps, so that F(k)
(X) has 2k-1 humps. For large enough parameter values, all  these hil ls and val leys

wil l intersect the 45° l ine, producing 2k fixed points of period k. These are listed for k  12 in the top row of Table 2. Such a l ist
includes degenerate points of period k, whose period is a submul tiple of k; in particular, the two period 1 points (X = 0 and X* ) are
degenerate solutions of equation (12) for al l k. By working from left to right across Table 2, these degenerate points can be subtracted
out, to leave the total  number of non-degenerate points of basic period k, as l isted in the second row of Table 2. More sophisticated ways
of arriving at this result are given elsewhere 13, 14, 16, 22, 30, 31.

Table 2. Catalogue of the number of periodic points, and of the various cycles (with periods k = 1 up to 12), arising from equation (1)
with a single-humped function F(X)

k 1 2 3 4 5 6 7 8 9 10 11 12

Possible total number of points with period k 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

Possible total number of points with non-degenerate period k 2 2 6 12 30 54 126 240 504 990 2,046 4,020

Total number of cycles of period k, including those which are degenerate and/or
harmonics and/or never locally stable

2 3 4 6 8 14 20 36 60 108 188 352

Total number of non-degenerate cycles (including harmonics and unstable cycles) 2 1 2 3 6 9 18 30 56 99 186 335

Total number of non-degenerate, stable cycles (including harmonics) 1 1 1 2 3 5 9 16 28 51 93 170

Total number of non-degenerate, stable cycles whose basic period is k (that is, 
excluding harmonics)

1 - 1 1 3 4 9 14 28 48 93 165

For example, there eventual ly are 26 = 64 points wi th period 6. These include the two points of period 1, the period 2 "harmonic" cycle,
and the stable and unstable pai r of triplets of points wi th period 3, for a total  of 10 points whose basic period is a submul tiple of 6; this
leaves 54 points whose basic period is 6.

The 2k period k points are arranged into various cycles of period k, or submul tiples thereof, which appear in succession by either tangent
or pitchfork bi furcation as the parameters in F(X) are varied. The thi rd row in Table 2 catalogues the total  number of distinct cycles of

period k which so appear. In the fourth row 14, the degenerate cycles are subtracted out, to give the total number of non-degenerate
cycles of period k: these numbers must equal  those of the second row divided by k. This fourth row includes the (stable) harmonics
which arise by pitchfork bi furcation, and the pairs of stable-unstable cycles arising by tangent bifurcation. By subtracting out the cycles
which are unstable from bi rth, the total number of possible stable cycles is given in row five; these figures can also be obtained by less
pedestrian methods 13, 16, 30. Finally we may subtract out the stable cycles which arise by pi tchfork bifurcation, as harmonics of some
simpler cycle, to arrive at the final  row in Table 2, which lists the number of stable cycles whose basic period is k.

Returning to the example of period 6, we have already noted the five degenerate cycles whose periods are submultiples of 6. The
remaining 54 points are parcel led out into one cycle of period 6 which arises as the harmonic of the only stable three-point cycle, and
four distinct pairs of period 6 cycles (that is, four initial ly stable ones and four unstable ones) which arise by successive tangent
bifurcations. Thus, reading from the foot of the column for period 6 in Table 2, we get the numbers 4, 5, 9, 14.

Using various labell ing tricks, or techniques from combinatorial theory, i t is also possible to give a generic list of the order in which the
various cycles appear 1, 13, 16, 22. For example, the basic stable cycles of periods 3, 5, 6 (of which there are respectively 1, 3, 4) must
appear in the order 6, 5, 3, 5, 6, 6, 5, 6: compare Tables 3 and 4. Metropolis et al . 16 give the expl ici t such generic l ist for all  cycles of
period k  11.
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Table 3 A catalogue of the stable cycles (with basic periods up to 6) for the equation Xt+1 = aXt(1 - Xt)

Width of the range

a value at which: Subsequent cascade of a values over

of "harmonics" with which the basic cycle,

Period of Basic cycle Basic cycle period k2n all or one of its harmonics,

basic cycle first appears becomes unstable become unstable is attractive

1 1.0000 3.0000 3.5700 2.5700

3 3.8284 3.8415 3.8495 0.0211

4 3.9601 3.9608 3.9612 0.0011

5(a) 3.7382 3.7411 3.7430 0.0048

5(b) 3.9056 3.9061 3.9065 0.0009

5(c) 3.99026 3.99030 3.99032 0.00006

6(a) 3.6265 3.6304 3.6327 0.0062

6(b) 3.937516 3.937596 3.937649 0.000133

6(c) 3.977760 3.977784 3.977800 0.000040

6(d) 3.997583 3.997585 3.997586 0.000003

As a corollary it follows that,  given the most recent cycle to appear, it is possible (at least in principle) to catalogue all the cycles which
have appeared up to this point. An especially elegant way of doing this is given by Smale and Williams 22, who show, for example, that
when the stable cycle of period 3 first originates, the total number of other points with periods k, Nk, which have appeared by this stage

satisfy the Fibonacci series, Nk = 2, 4, 5, 8, 12, 19, 30, 48, 77, 124, 200, 323 for k = 1, 2, ...,  12: this is to be contrasted with the total

number of points of period k which will eventually appear (the top row of Table 2) as F(X) continues to steepen.

Table 4. Catalogue of the stable cycles (with basic periods up to 6) for the equation Xt+1 = Xt  exp[r(1 - Xt)]

Width of the range

r value at which: Subsequent cascade of r values over

of "harmonics" with which the basic cycle,

Period of Basic cycle Basic cycle period k2n all or one of its harmonics,

basic cycle first appears becomes unstable become unstable is attractive

1 0.0000 2.0000 2.6924 2.6924

3 3.1024 3.1596 3.1957 0.0933

4 3.5855 3.6043 3.6153 0.0298

5(a) 2.9161 2.9222 2.9256 0.0095

5(b) 3.3632 3.3664 3.3682 0.0050

5(c) 3.9206 3.9295 3.9347 0.0141

6(a) 2.7714 2.7761 2.7789 0.0075

6(b) 3.4558 3.4563 3.4567 0.0009

6(c) 3.7736 3.7745 3.7750 0.0014

6(d) 4.1797 4.1848 4.1880 0.0083

Such catalogues of the total number of fixed points, and of their order of appearance, are relatively easy to construct. For any particular
function F(X), the numerical task of finding the windows of parameter values wherein any one cycle or its harmonics is stable is,  in
contrast, relatively tedious and inelegant. Before giving such results, two critical parameter values of special significance should be
mentioned.

Hoppensteadt and Hyman 21 have given a simple graphical method for locating the parameter value in the chaotic regime at which the
first odd period cycle appears. Their analytic recipe is as follows. Let  be the parameter which tunes the steepness of F(X) (for
example,  = a for equation (3),  = r for equation (4)), X*( ) be the fixed point of period 1 (the non-trivial solution of equation (5)),
and Xmax( ) the maximum value attainable from iterations of equation (1) (that is,  the value of F(X) at its hump or stationary point).
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The first odd period cycle appears for that value of  which satisfies 21, 31

X*( ) = F(2) (Xmax ( ))         (13)

As mentioned above, another critical value is that where the period 3 cycle first appears. This parameter value may be found

numerically from the solutions of the third iterate of equation (1): for equation (3) it is 14 a = 1 + 8.

Myrberg 13 (for all k  10) and Metropolis et al. 16. (for all k  7) have given numerical information about the stable cycles in
equation (3). They do not give the windows of parameter values, but only the single value at which a given cycle is maximally stable;
that is, the value of a for which the stability-determining slope of F(k)(X) is zero, (k) = 0. Since the slope of the k-times iterated map
F(k) at any point on a period k cycle is simply equal to the product of the slopes of F(X) at each of the points X*k on this cycle 1, 8, 20,

the requirement (k) = 0 implies that X = A (the stationary point of F(X), where (1) = 0) is one of the periodic points in question,
which considerably simplifies the numerical calculations.

For each basic cycle of period k (as catalogued in the last row of Table 2), it is more interesting to know the parameter values at which:
(1) the cycle first appears (by tangent bifurcation); (2) the basic cycle becomes unstable (giving rise by successive pitchfork bifurcations

to a cascade of harmonics of periods k2n); (3) all the harmonics become unstable (the point of accumulation of the period k2n cycles).
Tables 3 and 4 extend the work of May and Oster1, to give this numerical information for equations (3) and (4), respectively. (The
points of accumulation are not ground out mindlessly, but are calculated by a rapidly convergent iterative procedure, see ref. 1, appendix
A.) Some of these results have also been obtained by Gumowski and Mira 32.

5. PRACTICAL PROBLEMS

Referring to the paradigmatic example of equation (3), we can now see that the parameter interval 1 < a < 4 is made up of a
one-dimensional mosaic of infinitely many windows of a-values, in each of which a unique cycle of period k, or one of its harmonics,
attracts essentially all initial points. Of these windows, that for 1 < a < 3.5700 . .  corresponding to k = 1 and its harmonics is by far the
widest and most conspicuous. Beyond the first point of accumulation, it can be seen from Table 3 that these windows are narrow, even
for cycles of quite low periods, and the windows rapidly become very tiny as k increases.

As a result, there develops a dichotomy between the underlying mathematical behaviour (which is exactly determinable) and the
"commonsense" conclusions that one would draw from numerical simulations. If the parameter a is held constant at one value in the
chaotic region, and equation (3) iterated for an arbitrarily large number of generations, a density plot of the observed values of Xt  on the

interval 0 to 1 will settle into k equal spikes (more precisely, delta functions) corresponding to the k points on the stable cycle
appropriate to this a-value. But for most a-values this cycle will have a fairly large period, and moreover it will typically take many
thousands of generations before the transients associated with the initial conditions are damped out: thus the density plot produced by
numerical simulations usually looks like a sample of points taken from some continuous distribution.

An especially interesting set of numerical computations are due to Hoppensteadt (personal communication) who has combined many
iterations to produce a density plot of Xt for each one of a sequence of a-values, gradually increasing from 3.5700 . . to 4. These results

are displayed as a movie. As can be expected from Table 3, some of the more conspicuous cycles do show up as sets of delta functions:
the 3-cycle and its first few harmonics; the first 5-cycle; the first 6-cycle. But for most values of a the density plot looks like the sample
function of a random process. This is particularly true in the neighbourhood of the a-value where the first odd cycle appears (a =
3.6786..),  and again in the neighbourhood of a = 4: this is not surprising, because each of these locations is a point of accumulation of
points of accumulation. Despite the underlying discontinuous changes in the periodicities of the stable cycles, the observed density
pattern tends to vary smoothly. For example, as a increases toward the value at which the 3-cycle appears, the density plot tends to
concentrate around three points, and it smoothly diffuses away from these three points after the 3-cycle and all its harmonics become
unstable.

I think the most interesting mathematical problem lies in designing a way to construct some approximate and "effectively continuous"
density spectrum, despite the fact that the exact density function is determinable and is always a set of delta functions. Perhaps such

techniques have already been developed in ergodic theory 33 (which lies at the foundations of statistical mechanics), as for example in
the use of "coarse-grained observers". I do not know.

Such an effectively stochastic description of the dynamical properties of equation (4) for large r has been provided 28, albeit by tactical
tricks peculiar to that equation rather than by any general method. As r increases beyond about 3, the trajectories generated by this
equation are, to an increasingly good approximation, almost periodic with period (1 / r) exp(r - 1).

The opinion I am airing in this section is that although the exquisite fine structure of the chaotic regime is mathematically fascinating, it
is irrelevant for most practical purposes. What seems called for is some effectively stochastic description of the deterministic dynamics.
Whereas the various statements about the different cycles and their order of appearance can be made in generic fashion, such stochastic
description of the actual dynamics will be quite different for different F(X): witness the difference between the behaviour of equation
(4), which for large r is almost periodic "outbreaks" spaced many generations apart, versus the behaviour of equation (3), which for a ->
4 is not very different from a series of Bernoulli coin flips.
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6. MATHEMATICAL CURIOSITIES

As discussed above, the essential reason for the existence of a succession of stable cycles throughout the "chaotic" regime is that as each
new pai r of cycles is born by tangent bifurcation (see Fig. 5), one of them is at first stable, by vi rtue of the way the smoothly rounded
hil ls and val leys intercept the 45° line. For analytical  functions F(X), the only parameter values for which the density plot or "invariant
measure" is continuous and truly ergodic are at the points of accumulation of harmonics, which divide one stable cycle from the next.
Such exceptional  parameter values have found appl ications, for example, in the use of equation (3) with a = 4 as a random number
generator 34, 35: it has a continuous density function proportional to [X(1 - X)]-1/2 in the interval 0 < X < 1.

Non-analytical  functions F(X) in which the hump is in fact a spike provide an interesting special  case. Here we may imagine spikey hi lls
and val leys moving to intercept the 45° l ine in Fig. 5, and it may be that both the cycles born by tangent bifurcation are unstable from
the outset (one having (k) > 1, the other (k) < -1), for all  k > 1. There are then no stable cycles in the chaotic regime, which is
therefore li teral ly chaotic with a continuous and truly ergodic density distribution function.

One simple example is provided by

Xt+1 = a Xt ; if Xt < 1/2

X
t+1

 = a(1 - X
t
) ; if X

t
 > 1/2         (14)

defined on the interval  0 < X < 1. For 0 < a < 1, all  trajectories are attracted to X = 0; for 1 < a < 2, there are infini tely many periodic
orbi ts, along with an uncountable number of aperiodic trajectories, none of which are locally stable. The first odd period cycle appears

at a = 2, and al l integer periods are represented beyond a = (1 + 5)/2. Kac36 has given a careful discussion of the case a = 2.

Another example, this time with an extensive biological  pedigree 1 - 3, is the equation

Xt+1 =  Xt ; if Xt < 1

Xt+1 =  Xt
1-b ; if Xt > 1         (15)

If  > 1 this possesses a global ly stable equi librium point for b < 2. For b > 2 there is again true chaos, with no stable cycles: the first

odd cycle appears at b = (3 + 5)/2, and al l integer periods are present beyond b = 3. The dynamical properties of equations (14) and
(15) are summarised to the right of Table 2.

The absence of analytici ty is a necessary, but not a sufficient, condition for truly random behaviour 31. Consider, for example,

Xt+1 = (a / 2) Xt ; if Xt < ½

Xt+1 = a Xt (1 - Xt) ; if Xt > ½         (16)

This is the parabola of equation (3) and Fig. 1, but with the left hand half of F(X) flattened into a straight l ine. This equation does
possess windows of a values, each wi th i ts own stable cycle, as described generically above. The stabi li ty-determining slopes (k) vary,
however, discontinuously wi th the parameter a, and the widths of the simpler stable regions are narrower than for equation (3): the fixed
point becomes unstable at a = 3; the point of accumulation of the subsequent harmonics is at a = 3.27 . .; the fi rst odd cycle appears at a
= 3.44 . .; the 3-point cycle at a = 3.67. . (compare the first column in Table 1).

These eccentrici ties of behaviour mani fested by non-analytical  functions may be of interest for exploring formal  questions in ergodic
theory. I think, however, that they have no relevance to models in the biological  and social  sciences, where functions such as F(X)

should be analytical. This view is elaborated elsewhere 37.

Xt+1 =  Xt  [1 + Xt ]
-          (17)

This has been used to fi t a considerable amount of data on insect populations 38, 39. Its stabi li ty behaviour, as a function of the two
parameters  and , is il lustrated in Fig. 6. Notice that for  < 7.39 . . there is a global ly stable equil ibrium point for all  ; for 7.39. . <
X < 12.50. . this fixed point becomes unstable for sufficiently large , bi furcating to a stable 2-point cycle which is the solution for all
larger ; as increases through the range 12.50 . . <  < 14.77 . . various other harmonics of period 2n appear in turn. The hierarchy of

bifurcating cycles of period 2n is thus truncated, and the point of accumulation and subsequent regime of chaos is not achieved (even for
arbitrarily large ) until   > 14.77... 
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Figure 6. The solid lines demarcate the stability domains
for the density dependence parameter, , and the
population growth rate, , in equation (17); the dashed
line shows where 2-point cycles give way to higher cycles

of period 2n. The solid circles come from analyses of life
table data on field populations, and the open circles from
laboratory populations (from ref. 3, after ref. 39).

7. APPLICATIONS

The fact that the simple and deterministic equation (1) can possess dynamical trajectories which look like some sort of random noise has
disturbing practical implications. It means, for example, that apparently erratic fluctuations in the census data for an animal population
need not necessarily betoken either the vagaries of an unpredictable environment or sampling errors: they may simply derive from a

rigidly deterministic population growth relationship such as equation (1). This point is discussed more fully and carefully elsewhere 1.

Alternatively, it may be observed that in the chaotic regime arbitrarily close initial conditions can lead to trajectories which, after a
sufficiently long time, diverge widely. This means that,  even if we have a simple model in which all the parameters are determined
exactly, long term prediction is nevertheless impossible. In a meteorological context, Lorenz 15 has called this general phenomenon the
"butterfly effect": even if the atmosphere could be described by a deterministic model in which all parameters were known, the
fluttering of a butterfly’s wings could alter the initial conditions, and thus (in the chaotic regime) alter the long term prediction.

Fluid turbulence provides a classic example where, as a parameter (the Reynolds number) is tuned in a set of deterministic equations
(the Navier-Stokes equations), the motion can undergo an abrupt transition from some stable configuration (for example, laminar flow)
into an apparently stochastic, chaotic regime. Various models, based on the Navier-Stokes differential equations, have been proposed as
mathematical metaphors for this process 15, 40, 41. In a recent review of the theory of turbulence, Martin 42 has observed that the
one-dimensional difference equation (1) may be useful in this context. Compared with the earlier models 15, 40, 41, it has the
disadvantage of being even more abstractly metaphorical, and the advantage of having a spectrum of dynamical behaviour which is
more richly complicated yet more amenable to analytical investigation.

A more down-to-earth application is possible in the use of equation (1) to fit data 1, 2, 3, 38, 39, 43 on biological populations with
discrete, non-overlapping generations, as is the case for many temperate zone arthropods. Figure 6 shows the parameter values  and 
that are estimated 39 for 24 natural populations and 4 laboratory populations when equation (17) is fitted to the available data. The
figure also shows the theoretical stability domains: a stable point; its stable harmonics (stable cycles of period 2n); chaos. The natural
populations tend to have stable equilibrium point behaviour. The laboratory populations tend to show oscillatory or chaotic behaviour;
their behaviour may be exaggeratedly nonlinear because of the absence, in a laboratory setting, of many natural mortality factors. It is
perhaps suggestive that the most oscillatory natural population (labelled A in Fig. 6) is the Colorado potato beetle, whose present
relationship with its host plant lacks an evolutionary pedigree. These remarks are only tentative, and must be treated with caution for
several reasons. Two of the main caveats are that there are technical difficulties in selecting and reducing the data, and that there are no
single species populations in the natural world: to obtain a one-dimensional difference equation by replacing a population’s interactions
with its biological and physical environment by passive parameters (such as  and ) may do great violence to the reality.

Some of the many other areas where these ideas have found applications were alluded to in the second section, above 5 - 11. One aim of
this review article is to provoke applications in yet other fields.
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8. RELATED PHENOMENA IN HIGHER DIMENSIONS

Pairs of coupled, first-order difference equations (equivalent to a single second-order equation) have been investigated in several
contexts 4, 44 - 46, particularly in the study of temperate zone arthropod prey-predator systems 2 - 4, 23, 47. In these two-dimensional
systems, the complications in the dynamical behaviour are further compounded by such facts as: (1) even for analytical functions, there
can be truly chaotic behaviour (as for equations (14) and (15)), corresponding to so-called "strange attractors"; and (2) two or more

different stable states (for example, a stable point and a stable cycle of period 3) can occur together for the same parameter values 4. In
addition, the manifestation of these phenomena usually requires less severe nonlinearities (less steeply humped F(X)) than for the
one-dimensional case.

Similar systems of first-order ordinary differential equations, or two coupled first-order differential equations, have much simpler

dynamical behaviour, made up of stable and unstable points and limit cycles 48. This is basically because in continuous two-dimensional
systems the inside and outside of closed curves can be distinguished; dynamic trajectories cannot cross each other. The situation
becomes qualitatively more complicated and in many ways analogous to first-order difference equations when one moves to systems of
three or more coupled, first-order ordinary differential equations (that is, three-dimensional systems of ordinary differential equations).
Scanlon (personal communication) has argued that chaotic behaviour and "strange attractors", that is solutions which are neither points
nor periodic orbits 48, are typical of such systems. Some well studied examples arise in models for reaction-diffusion systems in
chemistry and biology 49, and in the models of Lorenz 15 (three dimensions) and Ruelle and Takens 40 (four dimensions) referred to
above. The analysis of these systems is, by virtue of their higher dimensionality, much less transparent than for equation (1).

An explicit and rather surprising example of a system which has recently been studied from this viewpoint is the ordinary differential
equations used in ecology to describe competing species. For one or two species these systems are very tame: dynamic trajectories will

converge on some stable equilibrium point (which may represent coexistence, or one or both species becoming extinct). As Smale 50

has recently shown, however, for 3 or more species these general equations can, in a certain reasonable and well-defined sense, be
compatible with any dynamical behaviour. Smale’s 50 discussion is generic and abstract: a specific study of the very peculiar dynamics
which can be exhibited by the familiar Lotka-Volterra equations once there are 3 competitors is given by May and Leonard 51.
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