
(57) 

Now for the physical interpretation. The Duffing equation describes the un­
damped motion of a unit mass attached to a nonlinear spring with restoring force 
F(x) -x - ex3 . We can use our intuition about ordinary linear springs if we 
write F(x) == -kx , where the spring stiffness is now dependent on x : 

Suppose e > O .  Then the spring gets stiffer as the displacement x increases-this 
is called a hardening spring. On physical grounds we'd expect i t  to increase the 
frequency of the oscillations, consistent with (57). For e < 0 we have a softening 

spring, exemplified by the pendulum (Exercise 7.6. 1 5) .  
It also makes sense that r' == O .  The Duffing equation is a conservative system 

and for all e sufficiently small, it has a nonlinear center at the origin (Exercise 
6.5 . 1 3). Since all orbits close to the origin are periodic, there can be no long-term 
change in amplitude, consistent with r' == 0 . •  

Validity of Two-Timing 

We conclude with a few comments about the validity of the two-timing method. 
The rule of thumb is that the one-term approximation Xo will be within O(e) of the 
true solution x for all times up to and including t - O(l/e) , assuming that both x 
and Xo start from the same initial condition. If x is a periodic solution, the situa­
tion is even better: Xo remains within O(e) of x for all t. 

But for precise statements and rigorous results about these matters, and for dis­
cussions of the subtleties that can occur, you should consult more advanced treat­
ments, such as Guckenheimer and Holmes (1983) or Grimshaw ( 1 990). Those 
authors use the method of averaging, an alternative approach that yields the same 
results as two-timing. See Exercise 7.6.25 for an introduction to this powerful 
technique. 

Also, we have been very loose about the sense in which our formulas approxi­
mate the true solutions. The relevant notion is that of asymptotic approximation. 
For introductions to asymptotics, see Lin and Segel ( 1 988) or Bender and Orszag 
( 1978). 

EXERC IS E S  FOR CHAPTER 7 

7. 1 Examples 

Sketch the phase portrait for each of the following systems. (As usual, r,O denote 
polar coordinates.) 
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7. 1 . 1  

7. 1 .3 

. 3 • 

r = r  - 4r ,  e 7. 1 .2 
r r( l r2 )(4 _ r2 ) ,  O = 2 - r2 7. 1 .4 

r = r(l - r2 )(9 r2 ) ,  e = 1 

r r sin r ,  e 1 

7. 1 .5 (From polar to Cartesian coordinates) Show that the system r = r(l - r2 ) ,  

e = 1 is  equivalent to 

X = x  y - x(x2 + / ) ,  y = x + y - Y(X2 + l ) ,  

where x = r cose , y = r sin e . (Hint: x f, (r cos e) r cos e - re sin e .) 

7. 1 .6 (Circuit for van der Pol oscillator) Figure 1 shows the "tetrode multi vi­
brator" circuit used in  the earliest commercial radios and analyzed by van der Pol. 

L 

I 

4 .......... --+0 
V = f(l )  

figure 1 

various voltages? 

In van der Pol ' s  day, the active element was a vac­
uum tube; today it would be a semiconductor de­
vice. It acts like an ordinary resistor when I is 

e high, but like a negative resistor (energy source) 
when I is low. Its current-voltage characteristic 
V f(I) resembles a cubic function, as discussed 
below. 

Suppose a source of current is  attached to the 
circuit and then withdrawn. What equations gov­
ern the subsequent evolution of the current and the 

a) Let V \1;
2 

-V
2
3 denote the voltage drop from point 3 to point 2 in the circuit. 

Show that V = - lie and V Li + f(I) . 
b) Show that the equations in (a) are equivalent to 

dw - -x 
d1: ' 

dx 
- = w - p.F(x) 
dr 

where x l;f2 I ,  w ell2 V , 1: (LC)-112 t ,  and F(x) f(DlI2 x) . 

In Section 7.5, we'll see that this system for (w, x) is equivalent to the van der 

Pol equation, if F(x) t x3 - X • Thus the circuit produces self-sustained oscilla­

tions. 

7. 1 .7 (Waveform) Consider the system r r(4 r2 ) ,  e 1 ,  and let 
x(t) = r(t) cos e(t) . Given the initial condition x(O) = 0. 1 , yeO) = 0 , sketch the ap­
proximate waveform of x(t) , without obtaining an explicit expression for it. 

7. 1 .8 (A circular limit cycle) Consider x + ax(x2 + xl i) + x = 0 ,  where 
a > O .  
a) Find and classify all the fixed points. 
b) Show that the system has a circular limit cycle, and find its amplitude and period. 
c) Determine the stability of the limit cycle. 
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d) Give an argument which shows that the limit cycle is unique, i .e . ,  there are no 

other periodic trajectories. 

7.1 .9 (Circular pursuit problem) A dog at the center of circular pond sees a 
duck swimming along the The dog chases the duck by always swimming 
straight toward it. In other words, the dog's  velocity vector always lies along the 
line connecting it to the duck. Mcanwhile, the duck takes evasive action by swim­
ming around the circumference as fast as it can, always moving counterclockwise. 

a) Assuming the pond has unit radius and both animals swim at the same constant 

speed, derive a pair of differential equations for the path of the dog. (Hint: Use the 

duck 

R 

e 

Figure 2 

coordinate system shown in Figure 2 and 

find equations for dR/de and dlP/d8 .) An­

alyze the system. Can you solve it explic­

itly? Does the dog ever catch the duck? 
b) Now suppose the dog swims k times 

faster than the duck. Derive the differen-
tial equations for the dog' s path. 

c) If k t ,  what does the dog end up doing 
in the long run? 
Note: This problem has a long and intrigu­

ing history, dating back to the mid- 1 800s at 
least. It is much more difficult than similar 
pursuit problems-there is no known solu­
tion for the path of the dog in part (a), in 
terms of elementary functions. See Davis 
( 1962, pp. 1 1 3- 1 25 )  for a nice analysis and a 
guide to the literature. 

7.2 Ruling Out Closed Orbits 
Plot the phase portraits of the following gradient systems x = -\lV. 

7.2.1  7.2.2 V = x2 _ /  7.2.3 V = eX sin y 

7.2.4 Show that all vector fields on the line are gradient systems. Is the same 
true of vector fields on the circle? 

7.2.5 Let x = /(x, y) , y g(x, y) be a smooth vector field defined on the phase 

plane. 
a) Show that if this is a gradient system, then d/jdy dgjdx . 
b) Is the condition in ( a) also sufficient? 

7.2.6 Given that a system is a gradient system, here 's  how to find its potential 

function V. Suppose that i = /(x, y) , y g(x, y) . Then x = -\lV implies 
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I '  

/(x, y) = - iJ VjiJx and g(x, y) = - iJ VjiJy . These two equations may be "partially 

integrated" to find V. Use this procedure to find V for the following gradient sys­

tems. 

a) x = / + y cos x, 

b) x = 3x2 

y = 2xy + sin x 

y 2 2v - xe · 

7.2.7 Consider the system x y + 2xy , y x + x2 - l .  
a) Show that iJ/jiJy iJgjiJx . (Then Exercise 7.2.5(a) implies this is a gradient 

system.) 

b) Find V. 
c) Sketch the phase portrait. 

7.2.8 Show that the trajectories of a gradient system always cross the equipo­

tentials at right angles (except at fixed points). 

7.2.9 For each of the following systems, decide whether it is a gradient system. 

If so, find V and sketch the phase portrait. On a separate graph, sketch the equipo­

tentials V = constant . (If the system is not a gradient system, go on to the next 

question.) 

a) x = y + x2 
Y , Y 

b) x = 2x , y = 8 y 

-x + 2xy 

7.2. 1 0  Show that the system x = y , y = -x y' has no closed orbits, by con-

structing a Liapunov function V = ax2 + bi with suitable a, b. 

7.2. 1 1 Show that V = ax2 + 2bxy + c/ i s  positi ve definite if and only if a > 0 

and ac b2 > O. (This is a useful  criterion that allows us to test for positive defi­

niteness when the quadratic form V includes a "cross term" 2bxy.) 

7.2. 1 2  Show that x -x + 2y' - 2/ ,  y = -x - y + xy has no periodic solutions. 

(Hint: Choose a ,  m ,  and f1 such that V xltl + ay" is  a Liapunov function.) 

7.2. 1 3  Recall the competition model 

of Exercise 6.4.6. Using Dulac ' s  criterion with the weighting function 

g = (N1 Nz )-
I

, show that the system has no periodic orbits in the first quadrant 

Np N2 > O .  

7.2. 1 4  Consider x y - I , Y y(x 2). 
a) Show that there are three fixed points and classify them. 
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b) By considering the three straight lines through pairs of fixed points, show that 
there are no closed orbits. 

c) Sketch the phase portrait. 

7.2. 1 5  Consider the system i x(2 - x - y) , Y y(4x - x2 - 3) .  We know from 
Example 7.2.4 that this system has no closed orbits. 
a) Find the three fixed points and classify them. 
b) Sketch the phase portrait. 

7.2.1 6  If R is not simply connected, then the conclusion of Dulac's criterion is 
no longer valid. Find a counterexample. 

7.2. 1 7  Assume the hypotheses of Dulac's criterion, except now suppose that R 
is topologically equivalent to an annulus, i .e. , it has exactly one hole in it. Using 
Green' s theorem, show that there exists at most one closed orbit in R .  (This result 
can be useful sometimes as a way of proving that a closed orbit is unique.) 

7.3 Poincare-Bendixson Theorem 

.(--7.3. 1 Consider i x - y - x(x2 + 5iL y = x + y  y(x2 + i) . 
a) Classify the fixed point at the origin. 
b) Rewrite the system in polar coordinates, using rr xX + yy and 

8 = (xY yi)/r2. 
c) Determine the circle of maximum radius, Ii ' centered on the origin such that all 

trajectories have a radially outward component on it. 
d) Determine the circle of minimum radius, r2 ' centered on the origin such that all 

traj ectories have a radially inward component on it. 
e) Prove that the system has a limit cycle somewhere in the trapping region 

Ii '5. r '5. r2 •  
r7.3.2 Using numerical integration, compute the limit cycle of Exercise 7.3. 1 
and verify that i t  lies in the trapping region you constructed. 

7.3.3 Show that the system i = x - Y x3 ,  Y = x + y l has a periodic solution. 

7.3.4 Consider the system 

a) Show that the origin is an unstable fixed point. 
b) By considering V ,  where V = (1 - 4x2 l)2 , show that all trajectories ap­

proach the ellipse 4x2 + l i as t --? 00 • 

7.3.5 Show that the system i -x - y + x(x2 + 21) . y x y + Y(X2 + 21) 
has at least one periodic solution. 
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7.3.6 Consider the oscillator equation x + F(x, -i;) -i; + x ::=  0 ,  where F(x, -i;) < 0 
if r -s; a and F(x, -i;) > 0 if r ;:: b ,  where r2 = + 
a) Give a physical interpretation of the assumptions on F. 
b) Show that there is at least one closed orbit in the region a < r < b .  

7.3.7 Consider -i; y + ax(l - 2b - r2 ) ,  y ::=  -x + ay( l r2 ) ,  where a and b are 

parameters (0  < a -s; I ,  0 -s; b < 1- ) and rl = Xl + /. 
a) Rewrite the system in polar coordinates. 
b) Prove that there is at least one limit cycle, and that if there are several, they all 

have the same period T(a, b). 
c) Prove that for b = 0 there is only one limit cycle. 

7.3.8 Recall the system r = r(l - r2 ) + flr cos e, iJ I of Example 7.3. 1 .  Using 

the computer, plot the phase portrait for various values of /1 > 0 . Is there a critical 

value fl, at which the closed orbit ceases to exist? If so, estimate it. If not, prove 

that a closed orbit exists for all /1 > O. 

7.3.9 (Series approximation for a closed orbit) In Example 7.3 . 1 ,  we used the 

Poincare-Bendixson Theorem to prove that the system r r(I r2 ) + /1rcos e ,  

iJ = I has a closed orbit i n  the annulus I /1 < r < � 1 + /1 for all fl < 1 . 

a) To approximate the shape r(e) of the orbit for fl «  1, assume a power series 

solution of the form r(e) 1 + /1rl (e) + 0(/12 ) .  Substitute the series into a dif­

ferential equation for drj de. Neglect all 0(/12 )  terms, and thereby derive a 

simple differential equation for 'i ce). Solve this equation explicitly for 'i ce) . 

(The approximation technique used here is called regular perturbation theory; 

see Section 7.6.) 

b) Find the maximum and minimum r on your approximate orbit, and hence show 

that it lies in the annulus � I - /1 < r < � I + /1 , as expected. 

c) Use a computer to calculate r(e) numerically for various small /1 ,  and plot the 

results on the same graph as your analytical approximation for r(e) . How does 

the maximum error depend on /1 ? 

7.3. 1 0  Consider the two-dimensional system x = Ax - r2x , where r Il x ll and 

A is a 2 x 2 constant real matrix with complex eigenvalues a ± iOJ . Prove that 

there exists at least one limit cycle for a > 0 and that there are none for a < 0 . 

7.3. 1 1 (Cycle graphs) Suppose x = f(x) i s  a smooth vector field on R 2 • An im­
proved version of the Poincare-Bendixson theorem states that if a trajectory is 
trapped in a compact region, then it must approach a fixed point, a limit cycle, or 
something exotic called a cycle graph (an invariant set containing a finite number 
of fixed points connected by a finite number of trajectories, all oriented either 
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clockwise or counterclockwise) . Cycle graphs are rare in practice; here' s a con­
trived but simple example. 
a) Plot the phase portrait for the system 

where r, e are polar coordinates. (Hint: Note the common factor in the two 
equations; examine where it vanishes.) 

b) Sketch x vs. t for a trajectory starting away from the unit circle. What happens 
as t � oo ?  

7.4 Lienard Systems 

f 7.4. 1 Show that the equation i + f.l(x2 l )x + tanh x = 0 ,  for f.l > 0 , has exaetly 
one periodic solution, and classify its stability. 

f 7.4.2 Consider the equation i + f.l(x4 - l)x + x O .  
a) Prove that the system has a unique stable limit cycle if f.l > 0 . 
b) Using a computer, plot the phase portrait for the case f.l 1 .  
c) If f.l < 0 ,  does the system still have a limit cycle? If so, is it stable or unstable? 

7.5 Relaxation Oscillations 

7.5.1  For the van der Pol oscillator with f.l » I , show that the positive branch 
of the cubic nullcline begins at x A 2 and ends at x B I . 

7.5.2 In Example 7.5 . 1 ,  we used a tricky phase plane (often called the Lienard 

plane) to analyze the van der Pol oscillator for f.l » 1 . Try to redo the analysis in 
the standard phase plane where x y ,  y = -x f.l(x2 - I) .  What is the advantage 
of the Lienard plane? 

7.5.3 Estimate the period of the limit cycle of i + k(x2 4)x + x == I for k » 1 .  

7.5.4 (Piecewise-linear nullclines) Consider the equation x + f.lf(x) X + x == 0 ,  
where f(x) = -1 for I x l  < I and f(x) = 1 for I x l ;:::: 1 .  

a) Show that the system is equivalent to x = f.l(y F(x» ,  y = - x / f.l ,  where F(x) 
is the piecewise-linear function { X + 2' x ::;; - 1  

F(x) - x, I x l :S; 1  
x - 2, x ;:::: 1 .  
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b) Graph the nullclines, 
c) Show that the system exhibits relaxation oscillations for f1 » I , and plot .the 

limit cycle in the (x, y) plane. .. 
d) Estimate the period of the limit cycle for f1 » 1 . 

7.5.5 Consider the equation �r + f1 ( I  x 1 - 1  ) x + x = O .  Find the approximate pe­
riod of the limit cycle for f1 » 1 . 

7.5.6 (Biased van der Pol) Suppose the van der Pol oscillator is biased by a 
constant force: X + f1 1) x + x = a ,  where a can be positive, negative, or zero. 
(Assume f1 > 0 as usual. ) 
a) Find and classify al l the fixed points. 
b) Plot the nullclines in the Lienard plane. Show that if they intersect on the 

middle branch of the cubic nullcline, the corresponding fixed point is unsta­
ble. 

c )  For f1 » I , show that the system has a stable limit cycle if and only if I a I < a, ' 
where a, is to be determined. (Hint: Use the Lienard plane.) 

d) Sketch the phase portrait for a slightly greater than a, . Show that the system is 
excitable (it has a globally attracting fixed point, but certain disturbances can 
send the system on a long excursion through phase space before returning to the 
fixed point; compare Exercise 4.5.3.) 
This system is closely related to the Fitzhugh-Nagumo model of neural activ­

ity; see Murray ( 1 989) or Edelstein-Keshet ( 1 988) for an introduction. 

7.5.7 (Cell cycle) Tyson ( 199 1 )  proposed an elegant model of the cell division 
cycle, based on interactions between the proteins cdc2 and cyclin. He showed that 
the model' s  mathematical essence is contained in the following set of dimension­
less equations: 

u = b( v  u)(a + u2 ) - u ,  v C - fl ,  

where u is proportional to the concentration of the active form of a cdc2-cyclin com­
plex, and v is proportional to the total cyclin concentration (monomers and dimers). 
The parameters b »  1 and a «  1 are fixed and satisfy 8ab < 1 ,- and C is adjustable. 
a) Sketch the nullclines. 
b) Show that the system exhibits relaxation oscillations for c, < c < c 2 '  where c, 

and c2 are to be determined approximately. (It is too hard to find c1 and c2 ex­
actly, but a good approximation can be achieved if you assume 8ab « 1 .) 

c) Show that the system is excitable if c is slightly less than c1 • 

7.6 Weakly Nonlinear Oscillators 

7.6. 1 Show that if (7 .6.7) is expanded as a power series in £ , we recover (7.6. 1 7). : � 
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� (Calibrating regular perturbation theory) Consider the initial value prob­
lem x + x + eX 0 , with x(O) 1 ,  x(O) = 0 . 
a) Obtain the exact solution to the problem. 
b) Using regular perturbation theory, find xo ' xI ' and X2 in the series expansion 

x(t, e) xo(t) + eXl (t) + e2 x2 (t) + 0(e3) . 
c) Does the perturbation solution contain secular terms? Did you expect to see 

any? Why? 

-t7.6.3 
x(O) 

(More calibration) Consider the initial value problem x + X = e , with 
1 ,  x(O) = O .  

I 

a) Solve the problem exactly. 
b) Using regular perturbation theory, find XO ' 

Xl ' and X2 in the series expansion 
x(t, e) = x()(t) + eXl (t) + e2 x2 (t) + 0(e3 ) .  

c )  Explain why the perturbation solution does or doesn' t  contain secular terms. 

For each of the following systems x + X + eh(x, x) 0 ,  with 0 < e « I , calculate 
the averaged equations (7.6.53) and analyze the long-term behavior of the system. 
Find the amplitude and frequency of any limit cycles for the original system. If 
possible, solve the averaged equations explicitly for x(t, e) , given the initial condi­
tions x(O) = a ,  X(O) = 0 . 

7.6.4 h(x, x) = X 7.6.5 h(x, x) = xx 2 

7.6.6 h(x, x) = xX 7.6.7 h(x, x) (x4 - l)x 
7.6.8 h(x, x) = ( Ixl - l ) x  7.6.9 h(x, x) (x2 - 1) x3 
7.6. 10  Derive the identity sin O cos2 0 = t [sin O + sin 30] as follows: Use the 
complex representations 

eifJ + 
cos O = ---

2 
sin O 

2i 

multiply everything out, and then collect terms. This is always the most straight­
forward method of deriving such identities, and you don't  have to remember any 
others. 

7.6. 1 1 (Higher harmonics) Notice the third harmonic sin 3(r + iP) in Equation 
(7.6.39). The generation of higher harmonics is  a characteristic feature of non­
l inear systems. To find the effect of such terms, return to Example 7 .6.2 and 
solve for Xl ' assuming that the original system had initial conditions x(O) 2 , 
x(O) O .  

7.6. 1 2  (Deriving the Fourier coefficients) This exercise leads you through the 

derivation of the formulas (7.6.5 1 )  for the Fourier coefficients. For convenience, 
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let brackets denote the average of a function: (t(e») == -k r2j(e) de for any 21r­Jo 
periodic function f. Let k and m be arbitrary integers. 
a) Using integration by parts, complex exponentials, trig identities, or otherwise, 

derive the orthogonality relations 

(cos ke sin me) 0 ,  for all k, m ; 

(cos W cos mO) (sin ke sin me) = 0 ,  for all k *" m ;  

(cos2 ke )  = (sin2 ke )  t , for k *" O .  

b) To find ak for k *" 0 , multiply both sides of (7.6.50) by cos me and average 

both sides term by term over the interval [0, 21r]. Now using the orthogonality 
relations from part (a), show that all the terms on the right-hand side cancel 
out, except the k = m term! Deduce that (h(e) cos ke) t ab which is equiva­
lent to the formula for ak in (7.6.5 I ). 

c) Similarly, derive the formulas for bk and ao ' 

7.6. 1 3  (Exact period of a conservative oscillator) Consider the Duffing oscilla­
tor x + x + eX3 = 0 ,  where 0 < e« 1 , x(O) = a ,  and X(O) = 0 . 
a) Using conservation of energy, express the oscillation period T(e) as a certain 

integral. 

b) Expand the integrand as a power series in e , and integrate term by term to ob­

tain an approximate formula T(e) Co + Cte + C2e2 + D(e3 ) .  Find co ' cp c2 and 

check that co ' ct are consistent with (7.6.57). 

� (Computer test of two-timing) Consider the equation x + eX" + x O .  
a) Derive the averaged equations. 
b) Given the initial conditions x(O) a ,  x(O) = 0 ,  solve the averaged equations 

and thereby find an approximate formula for X(t,e) . 

c) Solve x + eX3 + x = 0 numerically for a I , e = 2 ,  0 � t � 50 , and plot the re­

sult on the same graph as your answer to part (b). Notice the impressive agree­

ment, even though e is not small ! 

7.6. 1 5  (Pendulum) Consider the pendulum equation x + sin x = O .  
a) Using the method of Example 7.6.4, show that the frequency of small oscilla­

tions of amplitude a «  1 is given by w "" 1 TIr a2 • (Hint: sin x '"  x i x3 , 
where i x' is a "small" perturbation.) 

b) Is this formula for w consistent with the exact results obtained in Exercise 6.7.4? 

7.6. 1 6  (Amplitude of the van der Pol oscillator via Green 's  theorem) Here's  an--
other way to determine the radius of the nearly circular limit cycle of the van der 
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Pol oscillator x + lOx(x2 1) + x :::: 0 , in the limit lo « I . Assume that the limit cy­
cle is a circle of unknown radius a about the origin, and invoke the normal form of 
Green's theorem (i.e., the 2-D divergence theorem): 

fv .ndf JfV . VdA 
C A 

where C is the cycle and A is the region enclosed. By substituting v x (x, y) 
and evaluating the integrals, show that a 2 .  

7.6. 1 7  (Playing on a swing) A simple model for a child playing on a swing i s  

x + ( 1  + lOy + lO COS 2t) sin x :::: 0 

where lo and y are parameters, and 0 < lo « 1 . The variable x measures the angle 

between the swing and the downward vertical. The term 1 + lOy + lo COS 2t models 

the effects of gravity and the periodic pumping of the child' s legs at approximately 

twice the natural frequency of the swing. The question is: Starting near the fixed 

point x :::: 0 ,  X 0 ,  can the child get the swing going by pumping her legs this 

way, or does she need a push? 
a) For small x ,  the equation may be replaced by x + (1 + lOy + lo COS 2t)x :::: O .  

Show that the averaged equations (7.6.53) become 

r' :::: t r sin 2q" q,' t ( y + t cos 2q,) , 

where x :::: r cos O r(T)cos(t + q,(T». x :::: -r sin O = -reT) sin(t + q,(T» , and 

prime denotes differentiation with respect to slow time T :::: lOt . Hint: To aver­

age terms like cos 2t cos 0 sin 0 over one cycle of 0 , recall that t :::: 0 q, and 

use trig identities: 

(cos 2t cos 0 sin 0 ) :::: H cos(20 - 2q,) sin 20) 
:::: t { (cos 20 cos 2q, + sin 20 sin 2q,) sin 20) 

t sin 2q, . 

b) Show that the fixed point r 0 is unstable to exponentially growing oscilla­

tions, i .e . ,  reT) ro ekT with k > 0 ,  if Iy l < Yc where Yc is to be determined. 

(Hint: For r near 0, q,' » r' so q, equilibrates relatively rapidly.) 

c) For Iy l < Yc ' write a formula for the growth rate k in terms of y . 

d) How do the solutions to the averaged equations behave if Iy l > Yc ? 
e) Interpret the results physically. 

7.6. 1 8  (Mathieu equation and a super-slow time scale) Consider the Mathieu 

equation x + (a + lo cost) x = 0 with a ""  1 .  Using two-timing with a slow time 

.. 
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T = E2t , show that the solution becomes unbounded as t � 00 if 

1 - tr E2 + 0(E4 ) :o:; a :O:;  1 + fI E2 + 0(E4 ) . 

7.6. 1 9  (Poincare-Lindstedt method) This exercise guides you through an 
improved version of perturbation theory known as the Poincare-Lindstedt 
method. Consider the Duffing equation x + x + EX' = 0 ,  where 0 < E« I , 
x(O) = a ,  and X(O) = o .  We know from phase plane analysis that the true 
solution x(t, E) is periodic; our goal is to find an approximate formula for 
x(t, E) that is valid for all t .  The key idea is to regard the frequency W as un­
known in advance, and to solve for it by demanding that X(t, E) contains no sec­
ular terms. 

a) Define a new time r = wt such that the solution has period 2n with respect to 

r . Show that the equation transforms to w2 x" + X + EX' = o .  
b) Let x(r, E) = xo (r) + Exl (r) + E2x2 (r) + O(E' ) and w = I + EWI + E2W2 + O(E' ) . 

(We know already that Wo = I since the solution has frequency W = I when 

E = 0 .) Substitute these series into the differential equation and collect powers 

of E . Show that 

0(1) : x�' + xo = 0  

O(E) : x;' + X I = -2wlxG' - xb ·  

c) Show that the initial conditions become xo (O) = a ,  xo (O) = 0 ;  xk (O) = 
xk (O) = O  for all k > O . 

d) Solve the 0( 1)  equation for Xo . 

e) Show that after substitution of Xo and the use of a trigonometric identity, the 

O(E) equation becomes x;' + XI = (2w la - i a ' )  cos r - t a' cos 3r . Hence, to 
avoid secular terms, we need WI = i a2 . 

f) Solve for XI . 
Two comments: ( I )  This exercise shows that the Duffing oscillator has a fre­

quency that depends on amplitude: w = I + i Ea2 + 0(E2 ) , in agreement with 
(7 .6.57) .  (2) The Poincare-Lindstedt method is good for approximating peri­
odic solutions, but that ' s  all it can do ; if you want to explore transients or non­
periodic solutions, you can ' t  use this method. Use two-timing or averaging 
theory instead. 

7.6.20 Show that if we had used regular perturbation to solve Exercise 7.6. 1 9, we 
would have obtained xU, E) = a cos t + Ea' [ - i t  sin t + ,12 (cos 3t - cos t) ] + 0(E2 ) .  
Why is this solution inferior? 

7.6.2 1 Using the Poincare-Lindstedt method, show that the frequency of the 
limit cycle for the van der Pol oscillator x + E(X2 - I)x + x = 0 is given by 
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7.6.22 (Asymmetric spring) Use the Poincare-Lindstedt method to find the first 
few terms in the expansion for the solution of x + x + EX2 == 0 ,  with x(O) == a ,  
x(O) O .  Show that the center of oscillation is at x "" , approximately. 

ji;i;iiJ Find the approximate relation between amplitude and frequency for the 
periodic solutions of x Exx + x 0 . 

7.6.24 (Computer algebra) Using Mathematica, Maple, or some other computer 
algebra package, apply the Poincare-Lindstedt method to the problem 
x + x == 0 ,  with x(O) = a ,  and x(O) :: O .  Find the frequency (j) of periodic 
solutions, up to and including the 0(E3) term. 

7.6.25 (The method of averaging) Consider the weakly nonlinear oscillator 
x + x + Eh(x, x, t) = O .  Let x(t) = r(t) cos(t + </J(t» , x == -r(t) sin(t + </J(t» . This 
change of variables should be regarded as a definition of ret) and </J(t) . 
a) Show that r Eh sin(t + </J) ,  r� = Eh cos(t + </J) .  (Hence r and </J are slowly 

varying for 0 < E « 1 , and thus x(t) is a sinusoidal oscillation modulated by a 
slowly drifting amplitude and phase.) 

b) Let (r)(t) == f(t) = 2� r�(-r)d-r denote the running average of r over one cycle 

of the sinusoidal oscillation. Show that d(r)/dt == (dr/dt) , i .e. , it doesn't mat-

ter whether we differentiate or time-average first. 
c) Show that d(r)/dt E (  h [r cos(t + </J), - r sin(t + </J), t] sin(t + </J) ) . 
d) The result of part (c) is exact, but not helpful because the left-hand side in­

volves (r) whereas the right-hand side involves r .  Now comes the key approx­
imation: replace r and </J by their averages over one cycle. Show that 
r(t) = ret) + O(E) and </J(t) == (ji(t) + O(E) ' and therefore 

dr/dt E ( h [rcos(t + (ji), r sin(t + (ji) ,  t] sin(t + (ji) )+ 0(E2 ) 

r d(ji / dt = E ( h [r cos(t + (ji), - r sin(t + (ji), t] cos(t + (ji) ) + 0(E2 ) 

where the barred quantities are to be treated as constants inside the averages. These 
equations are just the averaged equations (7.6.53), derived by a different approach 
in the text. It is customary to drop the overbars; one usually doesn't distinguish be­
tween slowly varying quantities and their averages. 

7.6.26 (Calibrating the method of averaging) Consider the equation x == -Ex sin2 t, 
with 0 � E « 1  and x Xo at t == 0 . 
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a) Find the exact solution to the equation. 

b) Let x(t )  21n: L�('r)d'r . Show that x(t) x(t) + O(e) . Use the method of aver­

aging to find an approximate differential equation satisfied by x , and solve it. 
c) Compare the results of parts (a) and (b); how large is the error incurred by aver­

aging? 
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