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Different discrete and continuous methods for computing the Lyapunov exponents of dynamical 
systems are compared for their efficiency and accuracy. All methods are either based on the QR or 
the singular value decomposition. The relationship between the discrete methods is discussed in 
terms of the iteration algorithms and the decomposition procedures used. We give simple deriva­
tions of the differential equations for continuous methods proposed recently and show that they 
cannot be recommended because of their long computation time and numerical instabilities. The 
methods are tested with the damped and driven Toda chain and the driven van der Pol osciIlator. 

§ 1. Introduction 

The main aim of this paper is to compare different approaches for computing the 
spectrum of Lyapunov exponents that have been proposed during the last years.1

)-7) 

We consider discrete (fEZ) or continuous (fER) dynamical systems (M, ¢) that are 
defined by a diffeomorphic flow map acting on an m-dimensional state space M: 

¢t: M-->M, 

(1) 

A continuous dynamical system is usually given by an ordinary differential equation 

y=v(y), y=y(X; t)=¢t(x)EM, fER·, (2) 

The computation of the Lyapunov exponents is based on the linearized flow map 

(3) 

With respect to the orthonormal standard basis {el, "', em} in the tangent spaces T xM 
and T",t(x)M the linearized flow map Dx¢t is given as the invertible m x m flow matrix 
Y= Y(x; t). For discrete dynamical systems Y is obtained as the product of the 
Jacobi matrices of the map ¢t(t=l) at the successive orbit points Xj:=¢j(x) (lsj 
s n). When dealing with continuous systems the associated matrix variational 
equations 

Y=JY, . Y(x; 0)=1 (4) 

have to be integrated simultaneously with the differential equations (2) in order to 
obtain Dx¢t as the mX m matrix Y. Here J= J(y(x; t))=«av;jayJly(x;t)) denotes the 
Jacobi matrix of partial derivatives of the vector field v at the pointy(x; t). The 
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initial condition of the differential equation (4) in this case is the identity matrix I. 
The Lyapunov exponents Ai are given by the logarithms of the eigenvalues fl.i (1::;;: i::;;: m) 
of the positive and symmetric matrix 

Ax:=lim[ Y(x; tlr Y(x; t)]IIU , 
t-oo 

(5) 

where Y(x; t)tr denotes the transpose of Y(x; t). The existence of Ax for p·almost 
all xEM (p denotes an ergodic ¢-invariant probability measure on the state space M) 
is based on the multiplicative ergodic theorem proved by Oseledec in 1968.8

) The 
Lyapunov exponents are p-almost everywhere constant and describe the way nearby 
trajectories converge or diverge in the state space of a dynamical system by measur­
ing the mean logarithmic growth rates 

(6) 

of perturbations uEEig(Ax; fl.i) of the local flow in direction of the eigenspaces 
Eig(Ax; fl.i):={UE T xMIAxu=fl.iU} of the limit matrix Ax. More details on the 
meaning of Lyapunov exponents and related quantities may be found in the articles 
of Benettin et a1.4) Eckmann and Ruelle,6) Johnson, Palmer and Sell,9) Paladin and 
VulpianPO

) and Lauterborn and Parlitz. ll
) 

In § 2 two matrix decompositions are introduced that constitute the basis of two 
different ways for computing the Lyapunov spectrum. According to Eq. (8) or (13) in 
the following chapter it can in principle be computed by a single singular value (SV) 
or QR decomposition for a sufficiently large chosen time t (t-+=). Practically, 
however, the computation of the flow matrix Y fails for large times t, because the 
column vectors of Y in general converge very fast to the subspace of T¢t(x)M with the 
largest expansion rate.5

) This can be avoided with the help of suitable reortho­
normalization schemes where one may distinguish discrete and continuous methods. 
The discrete methods iteratively approximate the Lyapunov exponents in a finite 
number of (discrete) time steps and therefore apply to iterated maps and continuous 
dynamical systems where the linearized flow map is evaluated at discrete times. 

Discrete methods that use the QR decomposition are discussed in § 3.1. This 
decomposition may be performed by the well-known Gram-Schmidt orthonormaliza­
tion procedure (GS) or a sequence of Householder transformations (see Appendix A). 
The GS procedure was first used by Shimada and Nagashima3) and Benettin, Galgani, 
Giorgilli and Strelcyn,4) although they formally do not refer to the QR decomposition. 
The use of Householder transformations instead of the GS procedure was suggested 
by Eckmann and Ruelle6) because of their superior numerical properties. A method 
is called continuous when all relevant quantities are obtained as solutions of certain 
ordinary differential equations, i.e., continuous methods can only be formulated for 
continuous dynamical systems, not for maps. This kind of methods for computing 
the Lyapunov spectrum has been proposed by several authors.l),2),7),12),13) In the case 
of the QR decomposition differential equations for the orthogonal matrix Q and the 
diagonal elements of R are needed to determine the Lyapunov spectrum. In § 3.2 two 
derivations are given. The first one only holds for the case of the complete spectrum. 
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The second derivation yields the desired differential equations when only k (k< m) 
Lyapunov exponents are to be computed. In this case rectangular m X k matrices Q. 

are considered and the matrix identity QQtr = I cannot be used anymore. Therefore 
this second approach leads to more complicated differential equations than the first 
one. We discuss the problems that occur when these algorithms are used. 

In § 4 another method for computing the spectrum of Lyapunov exponents is 
considered that is based on the singular value decomposition SVD of the flow matrix 
Y. ' In contrast to the discrete versions of the QR algorithm discussed in § 3.1 for the 
SV decomposition no iterative procedure is known to the authors that avoids the 
typical numerical collapse. Therefore we resume here only the continuous method 
introduced by Greene and Kim!) with slight modifications that are necessary to avoid 
numerical overflow problems. It shows the same numerical inefficiency as the con­
tinuous methods based on the QR decomposition. A further disadvantage of this 
method is the fact that its differential equations become singular when the Lyapunov 
spectrum to be computed is degenerate, i.e., iii"" iii+! for at least one 1:0;:: i :0;:: m -1, which 
is the normal case for periodic and quasiperiodic attractors (see, e.g., Geist and 
Lauterborn.14

),15) The continuous methods based on the SV decomposition are there­
fore not suitable for the computation of Lyapunov diagrams like those shown in Refs. 
14), 15). 

We conclude with a final discussion of our experiences with the different methods. 

§ 2. Matrix decompositions 

2.1. Singular value decomposition 

Let 

Y=UFVtr (7) 

be the singular value decomposition (SVD) of, Y = Y(x; t) into the product of the 
orthogonal matrices U and V and the diagonal matrix F=diag(O'I(t), "', O'm(t».16) 
The diagonal elements O'i(t) (1:0;:: i:O;:: m) of F are called the singular values of Y. The 
SVD is unique up to permutations of corresponding columns, ,rows and diagonal 
elements of the matrices U, V and F. In those cases where all singular values are 
different a unique decomposition can be achieved by the additional request· of a 
strictly monotonically decreasing singular value spectrum, i.e., O'I(t) > O'z(t) > ... 
>O'm(t). Multiplying Eq. (7) with the transpose ytr= VFutr from the left shows, that 
the squares of the singular values iJ;(t) of Yare the eigenvalues of the matrix ytr Y 
(see, e.g., LorenzI7). Therefore Eq. (5) implies the relation 

(8) 

between the Lyapunov exponents iii, the eigenvalues fl.i of Ax and the singular values 
O'i(t) (l:O;::i:O;::m). 

The singular value decomposition permits an impressive geometric illustration of 
the meaning of the Lyapunov exponents. Multiplying Eq. (7) with V from the right 
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Fig, 1. Geometric illustration of (a) the SV and (b) 
the QR decomposition. 

yields 

YVi=(fi(t) U i , (lsism) (9) 

where the Vi and Vi (1 sis m) are the 
column vectors of the matrices V and U. 
When following the orbit IX a (infinitesi­
mal) small sphere around the initial 
point x (the unit sphere sm(x):={u 
E T xM111 ull = I} in the tangent space 
T xMy is deformed (by the linearized 
flow map Dx(P: T xM -'>'T",t(x)M) to an 
ellipsoid Em(x; t):=Dx1/(sm(x)) with 
principal axes (fi(t) U i (1 sis m) (Fig. 
l(a)). The mean logarithmic expansion 

rates of the principal axes give the Lyapunov exponents. 

2.2. QR decomposition 

Another way to look at the Lyapunov spectrum is to ask how the volumes Vk of 
k-dimensional parallelepipeds [P1(t), ... , Pk(t)] (lsksm) in the m-dimensional tan­
gent space T",t(x)M grow (or shrink) in time. The axes of the parallelepipeds are 
given by pi(t):=Dx1/( Oi)= YO i where {Or, ... , om} denotes an orthonormal basis of 
T xM chosen at random.4

),6) The orthonormal basis vectors Oi(l sis m) define 
orthogonal mxk matrices 0:=(0r, ... , Ok)(lsksm). It turns out that the sum of 
the first k Lyapunov exponents Ai (lsisksm) gives the desired growth rates 

(10) 

when the Lyapunov exponents constitute a monotonically decreasing sequence (see, 
e.g., Benettin et a1.4»). The volume Vk (lsksm) can be computed with the help of 
the uniquely defined QR decomposition 

c * 1,) l'~QR~(Q', "', Q") 1 R22 ". 
(ll) 

". ". 

... 0 

of the mX k parallelepiped matrix P:=(P1, '.', pk) into the product of an orthogonal 
mxk matrix Q (QitrQj=ou for lsi,jsk) and an upper triangular kxk matrix R 
with positive diagonal elements Rii>O (lsisk) (see Fig.l(b)): 

k 

Vk=IIRii. 
i=1 

Substituting the volumes Vk (lsksm) in Eq. (10) by the products (12) yields: 

Ai= lim .l.t In[Rii]. (1 sis m) 
t~'" 

(12) 

(13) 
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For almost all orthogonal bases {OI, "', om} the diagonal elements Rii (1:::;; i:::;; m) of 
R are, in the limit t---+ oo, ordered according to their size. In the following we take 
Oi:=ei as it is done usually. In particular cases however this special choice of {Or, 
"', om} can destroy the asymptotic monotony of the Rii (1:::;; i:::;; m) (for an example see. 
§ 5). 

§ 3. QR decomposition based methods 

3.1. Discrete methods 

The discretization ti := j. Llt (O:::;;j:::;; n) ofthe continuous time va~iable t (t = n· Llt) 
enables the stepwise computation of the QR decomposition of the m x k parallelepiped 
matrix P (l:::;;k:::;;m), where Llt has to be chosen sufficiently small to avoid the 
numerical problems mentioned above. The different algorithms for computing the 
QR decomposition of P for discretized continuous systems or iterated maps are 
summarized in the following diagram: 

R 
Rk --------------------------------------------------------~) Rk 

I I 
Q 

1 
Rm --------------------------------------~----------------_7 

II t II ( 

TXoM TXIM TX2M TXn-iM TXnM 
II ( ytJ II ( yl II ( II ( yn-I II ( 

R m -----------7) R m -------------3» R m - • • • --------7 R m --------------7) R m 

1 /I 1 / 
/ 

/ 
QO:=O / Q\ 

/ 

I 

/ pO 
I / 

/ / 

Rk ) Rk 
RO 

/;11 
/ 

/. Q2 / 
/ pI 

I 
/ 

/ 

) Rk 
Rl 

/ 
/ 

//1 I ///1 1 
// Qn 

/ 

/// pn-I I 

(14) 

The diagram (14) is commutative, since the flow Il1ptrix Y = yn-I ... yo can be ex­
pressed as the product of the matrices yi at the successive orbit points Xi :=¢ti(Xo) 
EM(O:::;;j:::;;n-1) by the chain rule and P=QR and yi-IQi-l=QiRi- I (l:::;;j:::;;n) by 
definition of the QR decomposition (11). The diagonal "maps" pi (O:::;;j:::;;n-l) are 
only important for continuous dynamical systems as will be discussed below. In that 
case the matrices yi and pi (O:::;;j:::;;n-1) can be obtained by integrating the matrix 
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variational equations (4) with the mX m unit matrix I (Iij=oij for Isism, Isjsm) 
or the orthogonal m X k matrices Qj (Qjtr Qj = I) as initial conditions, respectively. It 
is easy to show that yjQj=pj (Osjsn-l), because the relation d/dt(YjQj)=d/dt 
(yj)Qj implies that yjQj and p j are systems of fundamental solutions of the matrix 
variational equations (4) with the same initial conditions Qj (Osj s n-l) at times 
t=O (see, e.g., Ref. 18)). The commutativity of (14) and the uniqueness of the QR 
decomposition (11) imply: 

n-l 

Rii=IIR{i. (lsisk) 
j=O 

(15) 

Substituting the diagonal elements of R in Eq. (13) by the product (15) yields 

_ 1. 1 n-l j 

Ai- At 11m - ~ In[R ii ] . 
~ n-oo nj=O 

(16) 

The iterative computation of the diagonal elements R{i (1 sis k, 0 sj s n -1) of R
j 

can now be realized by two different "iteration paths" in the diagram (14). The first 
one is the so-called treppen-iteration algorithm 

(17) 

by Eckmann and Ruelle,6) where the yj-l are m X m matrices, the Qj-l are m X k 
matrices and the Rj-l are k x k matrices. Thus only the first k rows of yj-l (1 sj s n) 
are needed for this algorithm. In the case of an iterated map cjJ these rows are easily 
computed in terms of the relevant partial derivatives of cjJ at the points Xj-l := cjJj-l(X). 
For continuous dynamical systems however the numerical integration of the complete 
set of m2 matrix variational equations (4) is required to determine the first k rows of 
yj-l (lsjsn). To characterize the dynamics of high-dimensional systems often the 
knowledge of a small number k of the Lyapunov exponents' ,11, •.. , Ak (k<.m) is 
sufficient (see, e.g., Geist and Lauterborn14

),15) and Dressler19),20»). The time consuming 
integration of "superfluous" differential equations should therefore be avoided as far 
as possible. This can be done by bypassing the explicit numerical computation of the 
complete m x m matrices yj-l and the matrix multiplications Yj-1Qj-l in algorithm 
(17) by utilizing the (dashed) diagonals in diagram (14). In this way one obtains the 
diagonal algorithm 

(18) 

the principle of which has been used by Shimada and Nagashima,3) Benettin et al.4
) 

and Wolf et al. 5) 

3.2. Continuous methods 

3.2.1. Differential equations for the complete Lyapun6v spectrum 
If y is replaced by the product QR in the matrix variational' equations (4) we 

obtain 

QR+QR=JQR. (19) 

Multiplying (19) with Q-l = Qtr from the left and R-1 from the right yields 
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The right-hand side of Eq. (20) is an upper triangular matrix. The components of the 
skew symmmetric matrix 

are therefore given by the equation 

1 
(QtrJQ)ij, i> j 

Sij= 0, z=) 

_(QtrJQ)ji. i<j 

The matrix 5 may be used to define the desired differential equation for Q: 

Q=QS. 

By (20) and (22) the equations for the diagonal elements of R are given by 

RR· ii =(QtrJQ)ii. (l~i~m) 
" 

(21) 

(22) 

(23) 

(24) 

To determine the Lyapunov exponents it; only the logarithms Pi :=In(Rii ) of the 
diagonal elements of R are of interest. According to (24) they fulfill the equations 

(25) 

Thus to compute the spectrum of Lyapunovexponents only Eqs. (23) and (25) have to 
be solved simultaneously with the equations of motion (2). The quantities Pi(t)/t 
converge to the Lyapunov exponents tl.i(l~i~m) in the limit t~=. 

3.2.2. Differential equations for the largest k Lyapunov .exponents 
In the derivation of differential equation (23) for the orthogonal matrix Q from 

the definition (21) of 5 we have used the matrix identity QQtr = I. This is not possible 
in the case where only the largest k Lyapunov exponents are to be computed. Then 
R is a k x k matrix and Q is a m X k matrix. Therefore the identity Qtr Q = I holds 
but not QQtr=I. 

In the following a derivation of the differential equations for Q and the diagonal 
elements Rii (l~i~m) of R is given where the identity QQtr=I is not used. Equa­
tion (19) directly implies the differential equation 

Q=JQ-QW (26) 

for Q, where W: = RR-1 is a k x k upper triangular matrix. From (26) it follows: 

(27) 

As W is upper triangular and 5 skew symmetric it is easy to see that the equations 

1 
(QtrJQ. )ij+ (QtrJQ)ji , i<j 

Wij= (QtrJQ)ij, Z=J 

0, i>j 

(28) 
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Fig. 2. Operations count for the two continuous 
QR methods for computing the Lyapunov expo­
nents given in § 3.2. In the Eqs. (26), (28) and 
(29) for the m X k case nadd(m, k):=[2m2k 

+mk3 +mk2 -k2 -k]/2 additions and nmult(m, 
k):=[mk(2m + 3k + k 2

)] /2 multiplications 
occur. In the m x m case (Eqs. (22), (23) and 
(25)) nadim):=[5m3 -4m2

- m]/2 additions 
and nmult(m):=[5m3 +m2]/2 multiplications are 
to be computed. Thus for k larger than the 
critical value kadd(m):= max{kENlnadd(m, k) 

:O;:nadim)} (kmult(m):= max{kENlnmult(m, k) 

:0;: nmUlt(m)}) the computation of the largest k 

exponents needs more additions (multiplica­
tions) than the determination of the complete 
spectrum. The dependence of the quantities 
kadd and kmUIt on the state space dimension m is 
shown in the figure. 

for the components of W hold. Knowing W as a function of J and Q, the differential 
equation (26) can be solved to obtain Q(t). The differential equations for the loga­
rithms Pi(t) of the diagonal elements Rii of R are given in terms of W: 

(29) 

For k larger than a critical value the computation of the largest k exponents is more 
expensive tha~ the determination of the complete Lyapunov spectrum (see Fig. 2). 

§ 4. Singular value decomposition based continuous method 

Similar to the continuous QR method we will now formulate differential equa­
tions for the quantities that are needed to compute the Lyapunov spectrum in terms 
of the singular value decomposition SVD. 

To avoid computational difficulties with the exponentially increasing or decreas­
ing diagonal elements Oi (1:s i:s m) of the matrix F we consider the diagonal matrix 

E :=In(F)=diag(El, ... , Em) (30) 

with elements Ei :=In(o;) (l:Si:Sm). Differentiation with respect to time yields 

E=F-IF=F-l(ftrUF+F-lutrJUF+ Vtr17, (31) 

where the derivative F of F is given by substituting the flow matrix Y in the matrix 
variational equations (4) by its singular value decomposition Y = UFVtr (7). To 
eliminate V in Eq. (31) the sum E + Etr =2E is computed where the term Vtr 17+ 17tr V 
vanishes due to the orthogonality of V. With the abbreviations 

A : = utr (f = - (ftr U , 

B:=-F-1AF, 

c:= UtrJU, 
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this yields the following differential equation for E: 

2E=B+ E tr + D+ Dtr 
. (33) 

The right-hand side of Eq. (33) depends on the matrices ], F=exp(E), U and U. To 
separate the time derivatives E and U of E andU the components of the matrices B 
and D have to be considered. They are given by the equations 

B .. =-A .. (Jj 
lJ U (Ji ' 

D··=C··2.i... tJ lJ (Ji . (34) 

The orthogonality of U implies that A is skew symmetric and thus Bii= - Aii 
=0 (l:::;;i:::;;m). The diagonal elements ii= (jJ(Ji of E therefore fulfill the equation 

(35) 

which can be used to compute the quantities c;(t)/t~ At (1:::;; i:::;; m). By means of the 
off-diagonal elements in Eq. (33) the m(m-1)/2 equations 

i>j (36) 

for the components of A can be derived. To remove troublesome exponentially 
growing quantities equation (36) is multiplied by (JJ(Jj and the critical terms (Ji2 /6/ are 
replaced by 

h (2( )) (1 <' . < . .) 
ij :=exp Ci-Cj, - Z, J -m, z=f=. J (37) 

to get 

i<j 

Z=J 

i>j (38) 

By means of matrix A the desired differential equation for U can be formulated as 

U=UA. (39) 

For nondegenerate Lyapunov spectra {AJ the singular values (Ji(t) ~exp(Ad) consti­
tute in general a strictly monotonically decreasing sequence (J1 > ... > (Jm for t -> 00 and 
the quantities hij~exp(2t(Ai- Aj)) converge to zero very fast for i > j. This means 
that the skew symmetric matrix A in (39) tends to the matrix S of Eq. (21) in the limit 
t->oo. 

It should be noted that Eq. (39) becomes singular for attractors with degenerate 
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Lyapunov spectra because i\;=Aj (1":::;' i, j..:::;, m, i =1= j) implies limt-ooh,,(t)=1. For this 
reason and the fact that the continuous SVD method needs even more operations than 
the continuous QR method we have not investigated the m x k case although the SV 
decomposition is well defined for rectangular matrices, toO. I6

) 

§ 5. Numerical results 

The implemented methods for computing Lyapunov exponents are given in Table 
1. Four of these methods are discrete QR methods where different iteration algo­
rithms (Eqs. (17) and (18)) and different procedures for the QR decomposition are used. 
The GS method is based on the usual Gram-Schmidt orthonormalization procedure as 
well as the RGS method where the orthogonalization is repeated (see Appendix A.l). 
In the case of the HI and the H2 method Householder transformations are used for the 
QR decomposition. HI is based on the treppen-iteration algorithm (17) whereas H2 
is given by the diagonal algorithm (18). The continuous QR methods CQR for the 
complete Lyapunov spectrum is implemented as described in § 3.2.1. A continuous 
singular value method CSV has also been tested for a special low dimensional 
example as will be discussed in the following. 

The first dynamical system used to compare these methods is a damped and 
driven Toda chain of N=15 unit masses mi=1 and periodic boundary conditions 
qO=qN, qN+I=qI with the [(2N-2)+I]-dimensional state space M=R2N- 2XS I: 

(40) 

Here qi denotes the elongation of the ith mass mi from its equilibrium position, 
Vi:= qi its velocity, di :=qi-qi+I the relative elongations of adjacent masses, Ki 
:=exp(di)-1 the exponential restoring force of the spring between the ith and (i 
+ l)-th mass, Di :=(Vi+l- vi)d the internal dissipation force proportional to the 
relative velocities of the masses with damping coefficient d and F;(t) :=a sin(wot)oi,I 
a single-frequency external force with driving amplitude a and frequency woo This 
system possesses quasiperiodic solutions with two and three incommensurate fre~ 

Table 1. Classification of the implemented methods for computing Lyapunov 
exponents. 

Method Type Algorithm Decomposition of Y 

Type Method 

GS discrete (18) QR (A'I) 

RGS discrete (18) QR (A·2) 

HI discrete (18) QR (A'3)~(A'6) 

H2 discrete (17) QR (A ·3) ~(A '6) 

CQR continuous (22), (23), (25) QR -

CSV continuous (32), (35), (37)~(39) SV -
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Fig. 3. (a) Numerical estimates of the Lyapunov exponents for a T3·solution of a damped and driven 
Toda chain of N=15 masses at the driving amplitude a=3.5, the driving frequency wo=1.1237 and 
the damping coefficient d=O.1 as it develops with the number n of periods To :=27r/wo of the 
driving. (b) The second and the third Lyapunov exponent show oscillations with periods TI 
""'1/(wlo/2)""'3.4 and T2""'I/w2°""'69.4, where 1, wN2""'0.29786 and w2°""'0.01440 are the normalized 
basic frequencies of the corresponding 3·dimensional double torus 2T3 in the state space M. For 
a more detailed investigation of this attractor see Ret 15). 

quencies as well as high-dimensional strange attractors.14
),15),21) Their Lyapunov 

spectra are computed to, demonstrate the properties of the different algorithms. 
Figure 3(a) shows the temporal convergence of the numerical estimates of the com­
plete spectrum of Lyapunov exponents computed with the GS method for a three­
frequency quasiperiodic solution of the' (N = 15)-chain (se& Fig. 11 in Ref. 15)). Due to 
the oscillations connected with the structure of the attractor it needs a long time until 
they arrive at a sufficiently well-defined limit (Fig. 3(b)).' The same Lyapunov 
spectrum has also been computed with the RGS, HI, H2 and CQR method. The 
corresponding results for the largest and smallest Lyapunov exponent after 500 and 
2000 periods of the driving are given in Table II. The differences between the 
discrete methods are much smaller than the fluctuations of the numerical estimates 
A;(n) which converge in the limit n-H;Q to the Lyapuriov exponents Ai. Figure 4. 
shows the temporal convergence of the numerical estimates of the first, third and fifth 
Lyapunov exponent of a high dimensional strange at~ractor of the Toda chain 
computed with the discrete methods of Table I. The Lyapunov exponents computed 
with the GS and the RGS method agree within the resolution of the plot. The 
differences between the other methods are in the order of the fluctuations of the A;(n). 

Table II. Numerical estimates of the Lyapunovexponents Al and A2s after n 
=500 and n=2000 periods To=27r/wo of the drivirigfor the same attractor 
as in Fig. 3. 

Method Al (n=500) Al (n=2000) ,128 (n=500) A2s (n=2000) 

GS - .3878 * 10-4 -.7811*10-4 -.1803 -.1812 

RGS - .3878 * 10-4 - .7811 * 10-4 -.1803 -.1812 

HI - .3880 * 10-4 - .7810 * 10-4 -.1803 -.1812 

H2 - .3875 * 10-4 - .7803 * 10-4 -.1803 -.1812 

CQR - .2218 * 10-4 - -.1804 -
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Fig. 4. Numerical estimates of the Lyapunov 
exponents ,h>A3>0>As for a high-dimensional 
strange attractor of a damped and driven Toda 
chain of N=15 masses ((00=0.9, a=6.0 and d 
=0.1; see Fig. 13 in Ref. 21». 

Table III. Mean relative computation times of the 
discrete (GS, RGS, HI and H2) and continuous 
(CQR) QR decomposition based methods. 

Method CPU-Time 

GS 1.00 

RGS 1.02 

HI 1.07 

H2 1.17 

CQR 40.00 

Table III shows the mean relative com­
putation times. In consequence of the 
large number of operations the con­
tinuous QR method needs up to a factor 
40 (1) more CPU-time than the discrete 
standard methods (see Table III). 
Therefore the computations have been 
stopped after 500 periods of the driving 
because this took already about three 
hours on a CRAY X-MP/24 with 64-bit 
arithmetic. Furthermore the differen­
tial equations for Q do not assure that Q 
remains orthogonal during its time evo­
lution and thus nonorthogonal perturba­
tions due to round off errors grow in 
time (see Fig. 5). To overcome this 
difficulty Greene and Kim l

) proposed to 
add an additional correction term 
v[QtrQ_I] to t.he right-hand side of the 
differential equation (23) or (26). For 
the very special class of dynamical sys­
tems with time independent and symmet- . 

ric Jacobi matrices J they showed that this method preserves the orthogonality of the 
matrix Q. It should be noted that the necessity for excluding the growth of nonorth­
ogonal perturbations leads to a further increase of the computation time. 

In some periodically driven low-dimensional systems of the form 

x+g(x, x)=h(t)=h(t+ To), 

e.g., the driven van der Pol oscillator,23) 

g(x, x)=d(x2-l)x+x, 

h(t)=a cos (wot), 

(41) 
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Fig. 5. Check of the orthogonality of Q(x; f) for the strange attractor of Fig. 4. (a) Euclidean norm 

of the matrix QtrQ_I and (b) divergence of the vector field v minus the sum of the Lyapunov 
exponents as they develop with the number n of periods of the driving. These two quantities have 
to vanish for all times because Q is orthogonal and ~1\;f'-2)+11iii=divV(x)=Tr(J(x; t))=-2N'd 
= -3.0 has to be constant for all xEM. fER ,by Liouville's theorem (see, e.g., Amol'd22»). 

WO=2lC/To, (42) 

these problems may be overcome, because the QR decomposition of the flow matrix 
Y can be done explicitely yielding: 

Yi2 
122 
o 

Yi3) (cosQ' 
~3 = Si~Q' 

-sinQ' 

cosQ' 

o 

0) (Rll R12 R13) o 0 R22 R 23 . 
1001· . 

(43) 

In this case the orthogonal matrix Q may be parameterized by a single angle Q' and 
the differential equation (23) or (26) for Q can be replaced by the differential equation 

a = -sin2Q'-(~; cosQ'+ %~ sinQ' )cosQ' (44) 

for Q'. Therefore no problems with the orthogonality of Q can occur but the computa­
tion time is still about a factor of two higher than for the discrete standard methods. 
Note that the simple form of Eq. (43) follows from the special choice 0=1 for the 
orthogonal matrix 0 (see § 2.2). It implies R3.3(t)=1, i.e., ,13=0. Thus only the 
nontrivial Lyapunov exponents ,1i=limt-ooln[Rii(t)]/t (i=1,2) are (automatically) 
ordered according to their size. This exceptional role of the trivial exponent occurs 
in connection with all periodically driven dynamical systems. In contrast to the QR 
decomposition (43) the singular value decomposition (7) of the flow matrix Y does not 
yield simple orthogonal matrices U and V that are parameterized (only) by a single 
angle. To compute the Lyapunov exponents for the complete three-dimensional 
system one has therefore to s<Jlve the general differential equation (39) for the 
components of the matrix U. This leads to high computational costs'and a loss of 
the orthogonality of U during the computation. 

These problems can be avoided by first reducing the dimension of the problem 
from three to two and then performing the singular value decomposition, because 2 x 2 
orthogonal matrices can always be parameterized by a single angle. The reduction 
of the dimension results from the fact that the reduced two-dimensional set of 
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variational equations 

y=(_ °ag _

1
ag )y, Y(O)=I 

ax ax 
(45) 

suffices to compute the two nontrivial Lyapunov exponents ,h and;1z (see Appendix B). 
The SV decompostion Y = UPVtr of the reduced flow matrix Y is given by 

( ~1 Y21 
~2) = (cos /3 - sin(3)( 0"1 
Y22 sin/3 cos/3 0 

0)( cosy siny) 
0"2 -siny cosy . 

{46) 

Substituting U in Eq. (39) yields 

e( -:~:~ =:~:~}=(:~:; -:!:~)A (47) 

i.e., 

(48) 

The desired differential equations for the angle /3 and the diagonal elements of E 
= In(F) are therefore given as 

with 

and 

Cu=sin/3cos/3-( ~;cos/3+ %~ sin/3 )sin/3, 

C12=COs2/3+( ~;sin/3- %~ cos/3 )sin/3 , 

C21 = - sin2 /3 - ( ~; cos /3 + %~ sin/3 )cos /3 , 

C22 = -sin/3cos/3+( ~;sin/3- %~ cos/3 )cOS/3 . 

(49) 

(50) 

(51) 

(52) 

In contrast to the QR case (Eq. (44)) the right-hand side of Eq. (49) depends via the 
term h21 on the diagonal elements of E (or F) (see Eq. (51)). For nondegenerate 
Lyapunov exponents ,11>,12 the term h21 vanishes for t->oo and Eq. (49) becomes 
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Fig. 6. Numerical estimates of the nontrivial 
Lyapunov exponents A, and ,12 of a strange 
attractor of the driven van der Pol oscillator 
(41,42) for d=5, a=5 and (00=2.466. The 
solid and dashed curves show the results 
obtained with the CQR and CSV algorithm, 
respectively. Within the resolution of the plot 
both curves lie upon each other up to the first 
peak of ,12. The dotted curves were computed 
with the discrete GS method. The large 
magnitude of the negative exponent is reminis· 
cent of the destroyed strongly ·attracting torus 
in the 3-dimensionalstatespaceM : = R2 X 5'and 
leads to a fast convergence of arbitrarily cho­
sen tangent vectors to the direction of maximal 
expansion. This example is therefore well 
suited to study the numerical properties of the 
different methods for computing Lyapllllov 
exponents. A Poincare plot of this attractor 
showing its very thin extension normal to the 
expanding direction (which is consistent with 
the Lyapunov dimension of DL=2.014) is given 
in Ref. 23). 

identical to Eq. (44). Already after a short time both continuous methods then yield 
nearly identical results for the quantities Pi and Ci that are used to compute the 
Lyapunov exponents (see Eq. (29) or (35), respectively). This fast convergence is 
demonstrated for a strange attractor of the driven van der Pol oscillator in Fig. 6. 
The numerical estimates computed with the SV method do not converge faster to the 
Lyapunov exponents than those computed with the QR methods. 

§ 6. Conclusions 

Different continuous and discrete methods for computing Lyapunov exponents 
are compared with respect to their efficiency and accuracy. All algorithms are based 
either on the QR decomposition or the singular value decomposition. 

The continuous methods (that are only applicable to differential equations) show 
several disadvantages. First, they need much more computer time than the discrete 
methods. Secondly, the orthogonality of the matrices Q or U is destroyed during the 
computation if no counter-measures are taken (that increase the number of operations 
furthermore). Thirdly, the computation of only the largest k exponents is not 
necessarily cheaper than the determination of the whole spectrum. Fourthly, the 
continuous singular value method diverges for attractors with (almost) degenerate 
Ljapunov spectra which very often occur in dynamical systems (e.g., periodic win-
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dows, quasiperiodic oscillations (see for example, Fig. 3), near bifurcation points, 
etc.14

),15»). For these four reasons the continuous methods cannot be recommended. 
The quantities (QtrjQ)ii, Wii and Cii (l::::::i::::::m) occurring in the differential 

equations (25), (29) a.nd (35) for the Lyapunov exponents can be viewed as "local" 
divergence rates on the attractor. They depend not only on the point xEM of the 
state space M but also on the "history" of the orthogonal matrix Q or U.32

) These 
divergence rates occur in a natural way when considering continuous methods and 
may be viewed as the continuous and high-dimensional analogues of the nonunifor­
mity factor NUF defined for one-dimensional maps by Nicolis, Mayer-Kress and 
Haubs.33

) In practice, however, they can be computed with discrete methods, too. 
All discrete methods investigated so far are based on the QR decomposition 

because no discrete algorithm using the singular value decomposition (SVD) is known 
to the authors. The discrete QR methods a.re different with respect to the iteration 
algorithm used (Eq. (17) or (18)) and the procedure for computing the QR decomposi­
tion (Gram-Schmidt orthonormalization, repeated GS orthonormalization or House­
holder transformations). For iterated maps and the investigation of time 
series6

),24H7) it is natural to use algorithm (17) whereas in the case of differential 
equations only the methods depending on (18) avoid the solution of "superfluous" 
variational equations. Our investigation of the Toda chain as an example of a 
high-dimensional continuous dynamical system shows that the differences between the 
results obtained with the QR decomposition procedures listed above are at most of the 
order of the fluctuations of the numerical estimates Aln) (Ai(n)->Ai for n->oo) of the 
Lyapunov exponents Ai (1::::::i::::::m). Therefore, especially for differential equations 
where one can reduce the time steps Llt between successive orthonormalizations, the 
choice of the QR decomposition procedures is not critical. This might be different for 
some maps with extreme contraction ratios. In that case repeated GS orthonormal­
izations or Householder transformations with their superior numerical properties are 
recommended. 
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Appendix A 
-- Computation of the QR Decomposition--

In the following sections two procedures for computing the QR decomposition of 
the parallelepiped matrix P (see § 2.2) are recalled. 

A.I. Gram-Schmidt orthonormalization 

The column vectors Qj of Q can be determined recursively by the orthogonal 
projection of the column vectors p j of P on the column vectors Qj-1 (2-::;;,j -::;;,k): 

R jj :=IIQjll, 
Qj:=Qj/Rjj . (l-::;;,i-::;;'j-l,2-::;;,j-::;;,k) (A-I) 

Here Ilxll :=<xlx>1/2 denotes the Euclidean norm and <xly>:= ~f=1XiYi the inner 
product of the vectors x :=(X1, ._-, xmlr and y :=(Y1, ... , YmlrER1n. For nearly paral­
lel column vectors p j of P the lengths II Qjll of the difference vectors Qj (2-::;;,j-::;;,k) are 
very small. The computation of Q with algorithm (A -I) can therefore lead to errors, 
which can be avoided by an additional reorthogonalization: 

Rl1 :=IIP111, 
Q1 :=P1/Rl1 , 

Qj:=iji/Rjj , (l-::;;,i-::;;,j-l,2-::;;'j-::;;,k) 

(see Daniel, Gragg, Kaufman and StewareS
) and Stoer29». 

A.2. Householder transformations 

(A-2) 

A QR decompositon procedure characterized by large numerical stability has 
been found by Householder in 1958.30

) The mxk matrix p=p(O) is transformed with 
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the help of the symmetric and orthogonal Householder transformations 

HU) :=I-2<u(j)luU» , 

VU) '=(0 ... 0 pV:-I) ... pU-:l)tr +sign(pv:-I»cU)e. 
• , " J.J , , m,J J,J J , 

(A·3) 

into the upper triangular mxk matrix R=P(k-l)=H(k-I)···H(l)P, where pU) 
= HU) PU-I) (l::::::j:::::: k -1) (see, e.g., StoerZ9». 

The explicit multiplication of the matrices HU) (1::::::j::::::k-1) can be avoided by 
applying the k-1 Householder steps on the augmented mX(k+m) matrix 

(P,1) :=Q(R, S)=(QR, QS) (A·4) 

(see Mennicken and Wagenflihrer31». In this way one obtains the m x (k + m) matrix 
(R, S) and an explicit representation for the orthogonal m X k matrix Q: 

(A·5) 

'. The numerically computed matrix R, however, still contains negative diagonal 
elements. To reach the uniqueness of the QR decomposition of P one therefore has 
to multiply Q and R with the diagonal matrix SIGN (R):=diag (sign(Rll), •.. , sign 
(Rkk»: 

Q :=QSIGN(R) , 

R :=SIGN(R) R. (A·6) 

Appendix B 
-- Lyapunov Exponents of Periodically Driven Oscillators--

The Lyapunov exponents Xl and Xz of the reduced system (45) are given in terms 
of the diagonal elements Rll and Rzz of the corresponding QR decomposition 

(
Rll ~IZ)=R=Q-IY=( c~stf sin~)(151 15z) 
o Rzz -SIlla cosa Y:n Y2z 

(B·!) 

of the reduced flow matrix Y (seeEq. (13». In the 3X3 case the special structure of 
J and the flow matrix Y (see Eq. (43» implies the equations 

0= -sina Yil +cosa Y2z , 

Rll =cosa Yil +sina Y21 , 

Rzz=sina Yiz+cosa Y2z , (B·2) 

for the angle a and the diagonal elements Rll and R zz. Due to the special structure 
of J the differential equations for the components Yz:; (i, j=l, 2) are given by 
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Yr1= 1'21, 

Yr2= 1'22, 

. ag ag 
1'22= --Yi2 --.-1'22 ax ax ' (B·3) 

because Yin = Y32=O. Thus the components Yz:; and Yz:; are solutions of the same 
differential equation (45) or (B·3). Therefore Yz:;= l'ij (i, j=l, 2), ii=a and thus Rl1 
=Rl1 and R22=R22 by Eqs. (B·!) and (B·2), i.e., the Lyapunov exponents of the 
reduced system (45) are equal to those of the original system (43). 

References 

1) J. M. Greene and J.·S. Kim, Physica D24 (1987), 213. 
2) 1. Goldhirsch, P.·L. Sulem and S: A. Orszag, Physica D27 (i987), 311. 
3) 1. Shimada and T. Nagashima, Prog. Theor. Phys. 61 (1979), 1605. 
4) G. Benettin, L. Galgani, A. Giorgilli and J.·M. Streicyn, Meccanica 15 (1980), 9, 21. 
5) A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Physica DI6 (1985), 285. 
6) J.·P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57 (1985), 617. 
7) U. Parlitz, Ph. D. Thesis, Georg·August·Universitat Gottingen, Gottingen (1987). 
8) V. 1. Oseledec, Trans. Moscow Math. Soc. 19 (1968), 197. 
9) R. A. Johnson, K. J. Palmer and G. R. Sell, Siam J. Math. Anal. 18 (1987), l. 

10) G. Paladin and A. Vulpiani, Phys. Rep. 156 (1987), 147. 
11) W. Lauterbom and U. Parlitz, J. Acoust. Soc. Am. 84 (1988), 1975. 
12) J. M. Greene and J.·S. Kim, Physica D36 (1989), 83. 
13) M. Rokni and B. S. Berger, Quart. Appl. Math. 45 (1987), 789. 
14) K. Geist, Ph. D. Thesis, Georg-August-Universitat Gottingen, Gottingen (1989). 
15) K. Geist and W. Lauterbom, Physica D41 (1990), 1. 
16) J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, UNPACK User's Guide (SIAM, 

Philadelphia, Pennsylvania, 1979). 
17) E. N. Lorenz, Physica DI3 (1984), 90. 
18) H. Grauert and W. Fischer, Differential und Integralrechnung IL 3rd ed. (Springer, Berlin, 1978), 

Satz 2.5, p. 194. . 
19) U. Dressler, Phys. Rev. A38 (1988), 2103. 
20) U. Dressler, Ph. D. Thesis, Georg-August-Universitat Gottingen, Gottingen (1989). 
21) K. Geist and W. Lauterbom, Physica D31 (1988), 103. 
22) V. I: Amol'd, Gewohnliche Differentialgleichungen (Springer, Berlin, 1980). 
23) U. Parlitz and W. Lauterbom, Phys. Rev. A36 (1987), 1428. 
24) J.-P. Eckmann, S. O. Kamphorst; D. Ruelle and S. Ciliberto, Phys. Rev. A34 (1986), 4971. 
25) M. Sano and Y. Sawada, Phys. Rev. Lett. 55 (1985), 1082. 
26) J. Holzfuss, Ph. D. Thesis, Georg-August-Universitat Gottingen, Gottingen (1987). 
27) J. Holzfuss and W. Lauterbom, Phys. Rev. A39 (1989), 2146. 
28) J. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart, Math. Compo 30 (1976), 772. 
29) J. Stoer, Einfiihrung in die Numerische Mathematik I : unter Beriicksichtigung von Vorlesungen 

von F. L. Bauer, Heidelberger Taschenbiicher, vol. 105, 3rd ed. (Springer, Berlin, 1979). 
30) A. S. Householder, J. Assoc. Comput. Math. 5 (1958), 339. 
31) R. Mennicken and E. Wagenfiihrer, Numerische Mathematik 1, rororo vieweg, vol. 28 (Rowohlt 

Taschenbuch Verlag GmbH, Reinbeck bei Hamburg, 1977). 
32) U. Dressler and G. Mayer-Kress, personal communication. 
33) J. S. Nicolis, G. Mayer-Kress and G. Haub:,;, Z. Naturforsch. A38 (1983), 1157. 




