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Variational approach to nonlinear pulse propagation in optical fibers
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The problem of nonlinear pulse propagation in optical fibers, as governed by the non-

linear Schrodinger equation, is reformulated as a variational problem. By means of Gauss-
ian trial functions and a Ritz optimization procedure, approximate solutions are obtained
for the evolution during propagation of pulse width, pulse amplitude, and nonlinear fre-

quency chirp. Comparisons with results from inverse-scattering theory and/or numerically
obtained solutions show very good agreement.

I. INTRODUCTION

Interest in nonlinear properties of short-pulse
propagation in optical fibers has grown tremendous-
ly during the last few years. ' The two main
reasons for this interest are (i) the possibility of
undistorted optical-pulse propagation offered by sol-
iton pulses' and (ii) the possibility of extreme
compression of optical pulses resulting in pulse
widths well into the femtosecond domain. ' '

An important limiting factor in the developmen&
towards high data-transmission rates in long optical
fibers is the inherent dispersive pulse broadening ef-
fect. It was suggested already, in 1973 by
Hasegawa and Tappert, that it should be possible to
balance the dispersive spreading of an optical pulse
by a pulse-narrowing effect associated with the weak
nonlinearity of the index of refraction in the fiber.
However, at that time there existed neither fibers
with sufficiently low loss nor lasers at the appropri-
ate wavelengths to verify the theoretical predictions.

The subsequent explosive growth in optical-fiber
technology has led to single-mode fibers with ex-
tremely low losses (less than 1 dB/km) and to lasers
with wavelengths in the range where the group-
velocity dispersion becomes negative (a necessary
condition for soliton pulse propagation).

In 1980, the first experimental observation of soli-
tons in optical fibers was made. ' In a remarkably
conclusive experiment several of the characteristic
soliton properties were verified. In particular,
undistorted pulse propagation over long distance
was demonstrated for situations where the dispersive
pulse spreading was exactly balanced by nonlinear
pulse-narrowing effects. In addition, the pulse
compression and pulse-splitting characteristic of
higher-order soliton solutions were also observed
and found to be in excellent agreement with theoret-
ical predictions.

Following the feasibility demonstration implied
by this experiment, a sequence of papers have inves-

tigated different aspects of nonlinear short-pulse
propagation in long optical fibers. A major effort
has been concentrated on the possibility of creating
extremely short optical pulses in situations where
the nonlinear compressional effects dominate the
dispersive spreading.

In a series of experiments, ' Grischkowsky and
co-workers have achieved optical-pulse compression
factors of 10—12 resulting in subpicosecond pulses.
Unprecedented to date is the 30 fsec pulses reported
by Shank et al. also obtained using optical non-
linear compression techniques.

The theoretical foundation for the analysis of
nonlinear pulse propagation in optical fibers is the
nonlinear Schrodinger equation (NLS) (Refs. 1—8),
which governs the evolution of the pulse envelope.
This equation can, in principle, be solved exactly us-

ing inverse-scattering technique. However, the cor-
responding solutions, albeit exact, are not very expli-
cit, except for the special cases of the soliton solu-
tions. The lowest-order soliton corresponds to an in-

put of hyberbolic secant shape and propagates with
unchanged form along the fiber. Higher-order soli-
tons have amplitudes being integer multiples of the
fundamental soliton amplitude and exhibit a more
complicated amplitude variation involving periodic
pulse narrowing and pulse splitting.

In addition to these so-called "bright" soliton
solutions, which require anomalous net dispersion
properties, there also exist "dark" soliton solutions
of hyperbolic tangent shape, when net dispersion is
normal. (Normal dispersion is defined by
Bvg/Bk &0, where vz is the group velocity and k is
the wave number of the wave. ) The technical im-
portance of this situation for pulse compression has
been amply demonstrated in Refs. 5, 6, and 8, where
the combined action of fiber dispersion and non-

27 3135 1983 The American Physical Society



3136 D. ANDERSON 27

linearity has been used to create strongly frequency
chirped optical pulses. The pulses are subsequently
passed either through a sodium-vapor cell ' or a
grating compressor, where linear dispersion
compresses the pulses in a way analogous to the
chirp radar compression scheme.

The complicated form of the exact solution for
the NLS has motivated many numerical investiga-
tions as a complementary tool towards the under-
standing of the properties of the NLS. In view of
this, it would also be very desirable to obtain ap-
proximate analytical results giving some of the most
important features of the solutions as, e.g., the pulse
compression factor. Obviously, this cannot be done
without sacrificing some of the more detailed infor-
mation of the solutions. On the other hand, approx-
imate solutions could prove very useful for applica-
tions as well as for providing a better physical
understanding of the interplay between dispersion
and nonlinear effects in connection with pulse prop-
agation in optical fibers.

In the present work we will employ a variational
approach involving trial functions in order to
describe the main characteristics of the pulse evolu-
tion as determined by the NLS. This approach has
previously been used to investigate the related prob-
lem of nonlinear self-focusing of laser beams, ' "
where good agreement with numerical results has
been obtained. The main advantage of the variation-
al approach in the present context is that it provides
explicit, although approximate, analytical expres-
sions for the pulse compression/decompression fac-
tor, the maximum pulse amplitude, and the induced
frequency chirp. These are the three most impor-
tant single parameters characterizing the pulse evo-
lution.

The main shortcoming of the use of trial func-
tions is the inability to account for changes in pulse
shape. Thus, if we use a Gaussian trial function, its
amplitude, width, frequency, etc., may be allowed to
vary, but the Gaussian pulse shape is assumed to be
inherently preserved. However, changes in shape do
play an important role in several circumstances.
The pulse-compression technique demonstrated by
Grischkowsky et al. ,

5' uses the deformation of the
pulse towards a rectangular shape. This form has
the advantage of creating a lincer frequency chirp
through nonlinear self-phase modulation. The sub-

sequent dispersive pulse compression then results in
a pulse with strongly reduced wings. Furthermore,
effects like the higher-order soliton splitting' are ob-
viously out of reach in the present analysis and will

only be indicated as a pulse broadening.
With these caveats in mind, the present approach,

on one hand, gives useful approximate expressions

for the evolution of characteristic pulse parameters
like the compression factor, the amplitude, and the
nonlinearly induced frequency chirp and, on the oth-
er hand, provides a suggestive description of the
complicated interplay between dispersive and non-
linear effects.

II. THE NONLINEAR
SCHRODINGER EQUATION

In a nonlinear optical medium with a cubic non-
linearity, the index of refraction n is given by

n =np(tp)+ni(E ),
where np(cp) represents the linear part and ni deter-
mines the nonlinear change in the refractive index
due to the presence of the wave. The optical wave-
field E(r,x, t) is taken as'

E(r,x, t )=Re I Q(x, t )R (r)exp[i(kpx —cppt )]],

where g(x, t) is a slowly varying function of time t
and x, the coordinate along the fiber. R(r) is the
linear radial eigenfunction of the mode, and ko and

coo are the wave number and the frequency of the
wave [kp ——np(kp)cilp/c]. The use of the linear
eigenmode for the radial dependence is motivated by
the fact that the intensities considered in the present
context are far below the threshold for nonlinear
self-focusing. Assuming that the nonlinear and
dispersive effects are weak, and averaging R(r) over
the cross section of the fiber, one obtains

where

and c is the velocity of light. Finally, we introduce
the convenient variable w=t —kox and arrive at the
nonlinear Schrodinger equation

where a= —,ko' and a = —co~2/4e. Particular solu-
tions of Eq. (4) have been found, 7 the simplest ones
being the single bright soliton solution (~/a ~ 0)

g=pp[sech(r/rs ) ]e (5)
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where

—=pp( /2 )'
7b

(6)

tional corresponding to the NLS equation. It is easi-
ly shown that the NLS equation [Eq. (4)] can be re-
stated as a variational problem corresponding to the
Lagrangian L given by

A.b ———(K/2)pp,

and the corresponding dark soliton solution
(K/a (0)

2

~
B@* ~, Bt( Bl(

2 Bx c)x Bv 2

f=pp[tanh(r/rd ) ]e

where

1/2

2
~d ——KPp .

(8)

where the asterisk denotes the complex conjugate.
This implies that the NLS equation results from the
variational equations corresponding to the variation-
al principle

Pulses of the form given by Eqs. (5) and (7), with
parameters related by Eqs. (6) and (8), respectively,
will propagate along the optical fiber with preserved
shape as a result of an exact balance between disper-
sive and nonlinear effects. However, if the soliton
parameters are not related by Eqs. (6) and (8), the
pulse form will change in a complicated way, which
is not easily described analytically. It has been
shown numerically for the case K/a &0 that if the
soliton width ~b in Eq. (5) is kept fixed, and pp takes
on values being integer multiples of the fundamental
soliton amplitude (2a/K)' /~b, higher-order soli-
tons are obtained. These exhibit successively more
complicated oscillatory behavior involving pulse
compression/decompression and pulse splitting.

For amplitudes, which are not exact integer multi-
ples of the fundamental amplitude, the pulse will os-
cillatively change shape and asymptotically settle
down to the ¹oliton solution corresponding to the
closest integer. ' Actually, inverse-scattering theory
predicts that any reasonable initial pulse shape will

eventually produce a discrete ¹oliton solution
when the continuous "excess modes" have died
away.

In the present work, we will give an approximate
description of the evolution of some of the most
fundamental properties connected with the nonlinear
propagation of optical pulses. In particular, we will
concentrate on information concerning pulse width,
pulse amplitude, and frequency chirp. For this pur-
pose we will, in the next section, reformulate the
NLS equation as a variational problem.

i.e., the equation

(10)

6L 0
ax

BL

a@'

Bx

BL

$(O, r) =Apexp
2ap

(12)

where Ap is the maximum amplitude of the pulse
and ap is the characteristic pulse width.

The subsequent evolution of the pulse envelope
for x & 0 is assumed to be describable as [cf. Eqs. (5)
and (7))

is equivalent to Eq. (4).
In the Ritz optimization procedure, the first vari-

ation of the variational functional is made to vanish
within a set of suitably chosen trial functions. As
trial functions we will use Gaussian shaped pulses.
This choice is convenient but by no means the only
possible one e.g., hyperbolic secant shaped pulses
would have done equally well, and for some situa-
tions even better. The only advantage of the Gauss-
ian shaped pulse is that in the linear limit the varia-
tional equations will reproduce the exact solution of
Eq. (4). Thus, we assume that the initial pulse has a
Gaussian form or a shape which can reasonably well
be approximated by a Gaussian, i.e.,

III. A VARIATIONAL FORMULATION
OF THE NLS EQUATION

P(r, x) =A(x)exp — +ib(x)r, (13)
Za (x)

Our approximate analysis of the pulse propaga-
tion problem will involve essentially a Ritz optimi-
zation procedure, ' '" based on the variational func-

i.e., as a still Gaussian shaped pulse, where the
(complex) amplitude A(x), the pulse width a(x), and
the frequency chirp 2b(x)~ all are allowed to vary
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with distance of propagation.
Inserting the trial function given by Eq. (13) into

the variational principle, Eq. (10), we obtain the re-
duced variational problem

5 f (I.)dx=o, (14)

(L)= f L,dr, (15)

and I.G denotes the result of inserting the Gaussian
ansatz into the Lagrangian I.. By performing the
integration implied by Eq. (15) we obtain

5(L) 0 . dA' „dA
5a dx dx

+3 fA f'a2

fA f'
a 2

~fA
f

=0,
2

5b dx
=0 ~ (a '

f
A

f
) = —4uba '

f

A
f

(19)

(L)

—«3 fA f

2 4b2+—

xafA
f2

(16)

If we multiply Eqs. (17) and (18} with A' and 3,
rcspcctlvcly, wc obtain by subtracting and add1ng
the following equations:

(a fA
f

)=0,
dx

The reduced variational principle, expressed by Eq.
(14), results in a set of coupled ordinary differential
equations for the Gaussian parameters A, a, and b,
which together determines the evolution of the
pulse.

IV. VARIATIONAL EQUATIONS
FOR THE GAUSSIAN PARAMETERS

%C can now proceed to study the variational
equations for the Gaussian paraIneter functions
A(x), A'(x), a(x}, and b(x} which result from the
variational principle [Eq. (14)] with the reduced La-
grangian (L) given by Eq. (16). The following
variational equations are obtained:

5(L) d=0 ~ (I'aA )
dx

dA 3 db= —ta +Ha
dx dx

f

2 a2 «2 4b2+
dx a

+ v2~ fA f'

Equation (21) implies a constant of motion, i.e.,

a(x) fA(x)
f

=const=ao fAO f
=Eo»,

which expresses the fact that the energy of the pulse
does not change. This result could also have been
obtained from the well-known invariant of the NLS
equation, viz. ,

f f
1((x,r)

f
dr=const . (24)

Using the fact that a(x)
f
A(x)

f

is constant, we ob-
tain from Eq. (20)

—«3A 4b +—+v 2sa
f
A

f
A,4

5 L d=0 ~ ( iaA')—
5A dx

dA, 3db= —)a +A'a
dx dx

r

—«'A' 4b'+ —+v2~a fA f'A,a'

By comparing Eqs. (19}and (22) we have

a —4aab +—3—db q a ir fA f~ =0,
dx a 2 2 a

which can be combined with the derivative form of
Eq. (25) to yield

d2a 4a2 ~~ fA f (27)
dx a

We finally eliminate
f
A

f
by means of the constant

of motion, Eq. (23), and integrate Eq. (27) once.
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'2
1 da +H(a) =0 .
2 dx

(28)

This yields an equation for the variation of a(x),
which is analogous to that of a particle moving in a
potential well, viz. ,

11(y)=~+—"+I:.
y

(34)

We assume that the "particle starts from rest, " i.e.,
that the pulse at x =0 has a(0) =ap and
[da(x)/dx]„o=0. This determines It to be

The potential field II(a) is given by
E=—(p+v) . (35)

2a Ep
II(a) = —a~~2 +c,

a 2 a
(29)

where c is a constant to be determined by initial con-
ditions.

Thus, the solution of the variational problem is
reduced to solving Eq. (28) for the pulse width vari-
ation, since once a(x) is known, the frequency chirp
parameter b(x) is determined by Eq. (25) as

The characteristic behavior of a(x) can very con-
veniently be inferred from the properties of the po-
tential function II(y). We will begin this study by
first considering the linear limit, i.e., ~=0 which
implies v=0.

A. Linear theory

In the limit when only linear dispersion is opera-
tive, the potential function becomes

b(x) =—1 dlna

dX
(30)

II(y) =~—p (36)

SW2

dx a2 8
(31)

and the absolute value of the amplitude
~

A(x)
~

is
determined by the constant of motion, Eq. (23). Fi-
nally the phase P(x) of A(x) (writing
A(x)= ~A(x)

~
exp[if(x)]) is obtained from Eq.

(22), using also Eq. (26)

and the general form of II(y) is given in Fig. 1. The
mechanical analogy implies that a particle released
from rest at y =1 will move towards larger y and
descend the potential slope with ever increasing
speed. This obviously corresponds to the ordinary
monotonous dispersive spreading of a wave pulse in
a dispersive medium. The analysis can be made
more quantitative by solving Eq. (31) for the varia-
tion of a (x). This directly yields

The potential well description for the variation of
a(x), as given by Eqs. (28) and (29), conveys a sug-
gestive physical picture of the competition between
dispersive and nonlinear effects. This will be dis-
cussed in more detail in the next section.

V. THE POTENTIAL WELL DESCRIPTION

For the further analysis of Eqs. (28) and (29),
describing the evolution of the pulse width, it is
convenient to introduce the normalization
a(x)/ao ——y(x) and the constants

4a x
y (x)=1+2@x =1+

ap4

From Eq. (30) we obtain

ax/ap 2

b(x) =-
ap( 1 +~ x /ap)

The variation of
~

A (x)
~

is found from Eq. (23)

2X2
JA(x) [

= /Ao [
1+4

a,4

(37)

(38)

(39)

2'p= 4 &0~
ap

axEp
3

ap

CK=—.
2

ap

This yields

(32)

n(y)

with

+n(y) =01 dy

2 dx
(33)

FIG. 1. Qualitative plot of the potential function II(y)
in the linear case (v=O).
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and the phase variation P(x) is determined from Eq.
(31) as

m(y)

-t& —CO

1 2(xx
P(x) = —,arctan

2
ao

(40)

The solution given by Eqs. (37)—(40) is more than
an approximate solution; it coincides with the exact
solution for the well-known dispersive spreading of
a Gaussian pulse, viz. ,

-li(+pl

y(x, r)= ~AQ
~

I—2l QX

ao

1/2

&(exp
2a 0(1—2iax /a 0)

(41)

FIG. 3. Qualitative plot of the potential function lI(y)
in the case of anomalous dispersion and weak nonlinearity

( —l & v/JM &0). For comparison the linear case is also in-

serted (———).

This result gives an indication of the power of ap-
proximation of the variational approach.

B. Qualitative nonlinear theory

The dynamic interplay between dispersion and
nonlinearity is reflected in the properties of the po-
tential function which turn out to depend crucially
on the sign and magnitude of the ratio v/p, i.e., on
the relative importance of dispersion and nonlineari-

ty. The following properties are sufficient to under-

stand the qualitative behavior of H(y):

oo, y~0
(i) H(y) ~ '

—(p+v), y~ ~

(ii) H(y)=0 for y =1 andy= —(1+v/p) '—=y. ,

(iii) H'(y)=0 for y =y = —2p/v,

(iv) H'(1) = —p(2+ v/p),

(v) H(y~)= —(2p+v) /(4p) &0 .

These results imply that it is convenient to divide

the possible values of v/p into four distinct regions,
characterized by very different properties.

Region I: v/p & 0 (normal dispersion, a/v & 0).
The qualitative behavior of H(y) in this region is
shown in Fig. 2. The potential curve is found to lie

below that of the linear case for y & 1. The physical
inference is that the nonlinearity increases the pulse

spreading, making the pulse broaden at a faster rate
than in the purely linear case.

Region II: —I & v/p ~ 0 (anomalous dispersion,
a/a &0, and weak nonlinearity). A qualitative plot
of II(y) for this range of values is shown in Fig. 3.
The nonlinearity is seen to oppose the dispersive
spreading of the pulse, but is not strong enough to
cancel the linear pulse broadening effect.

Region III: —2 &v/p & —I (anomalous disper
sion, a/~&0, and intermediately strong nonlineari-

ty). From Fig. 4, we see that the nonlinearity is now

strong enough to create a potential well between

y =1 and y =y. —= —(1+v/p) '. A mechanical
analogy suggests a solution which oscillates between
the zeros of H(y). Thus, in this case, the dispersive

vly)

v(yl
11-2( —C -1
Il

FIG. 2. Qualitative plot of the potential function II(y)
in the case of normal dispersion (v/p&0). For compar-
ison the linear case is also inserted (———).

FIG. 4. Qualitative plot of the potential function II(y)
in the case of anomalous dispersion and intermediately

strong nonlinearity (—2&v/p& —1). For comparison
the linear case is also inserted (———).
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spreading of the pulse is stopped at y =ye by non-

linear effects, which subsequently compress the
pulse back to the initial pulse width. This behavior
is repeated in an oscillatory manner.

Limit ease. v/p = —2. In the limit, when
v/p~ —2, we obtain y. =1=y and II'(1)
=0=II(y~). The potential well has degenerated
into a single point and a particle released at this
point will stay there. In the present context, this im-

plies that a wave pulse for which v/p= —2 prop-
agates with unchanged form as a consequence of an
exact balance between nonlinear and dispersive ef-
fects. This should correspond to the case of a bright
soliton solution. The condition v/p= —2 translates
into

FIG. 6. Qualitative plot of the potential function ll(y)
in the case of anomalous dispersion and strong nonlineari-

ty (v/p (—2). For comparison the linear case is also in-

serted ( ———).

—=
I
~a

I

1

2~2a

and the phase variation P(x) of the pulse becomes a
simple wave number shift given as

P(x) = —
i Ao

~

x .
3'

8
(43)

This compares very favorably with the relations be-
tween the soliton parameters as given by Eqs. (5)
and (6). The general agreement between the exact
soliton curve and the approximate "Gaussian soli-
ton" is also good as is evident from Fig. 5. Finally
we note, as a further comparison, that the integral
contents under the curves also are very close, viz. ,

a/Pa

J posech(r/rt, )dt

I poexp( r /2a o )—dt

1/2

1.054 .

This good agreement between the variational solu-
tion and the exact nonlinear soliton solution pro-
vides a further confirmation of the power of approx-
imation inherent in a variational approach. It is ob-
vious that if we had based our trial functions on hy-
perbolic secant shaped solutions, the variational pro-
cedure would have reproduced the exact soliton
solution and instead given a good approximation for
the linear Gaussian solution describing the disper-
sive spreading of an initially Gaussian pulse.

Region IV: v/)M & —2 (anomaloas dlsperslon,
a/a & 0, and strong nonlinearity). In this region a po-
tential well is created for values of y less than 1 (see
Fig. 6), since y. = —(1+v/p) '~1. Thus again,
the pulse width will exhibit an oscillatory behavior.
However, initially nonlinear effects dominate, and
the pulse will start by being compressed to a
minimum pulse width a~ given by

aoa.= (44)
I
I+v/t

I

before dispersive effects are able to balance the non-
linear compression and make the pulse width in-

ciease.

VI. FURTHER COMPARISON
WITH SOLITON THEORY

I I I
I I I I I

-1 -3 -2 -1 0 '1 2 3 I
FIG. 5. Comparison between the exact soliton shape

( ) given by Eq. (5) and the variationally obtained
"Gaussian sohton" (———).

Several of the features of the solutions discussed
in the previous section, in particular, for values of
the parameter v/p in the range v/p & —1, i.e., re-
gions III and IV, can be related to exact results from
soliton theory. In order to make such a comparison,
we give some important results for soliton propaga-
tion as obtained by inverse-scattering technique
and/or numerical solutions of the nonlinear
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Schrodinger equation. ' Consider pulses of the
form

1/2

2.5

/) ~

j&s
K

Q(O, r) =fposech po 2' 7 7 (45)

where f=1 corresponds to the single soliton solu-
tion. Soliton theory predicts that such pulses during
propagation will perform a sequence of more or less
complicated oscillations in an asymptotic develop-
ment towards a pure ¹oliton solution, where N is
determined as the largest integer, which satisfies

2.0—

1.5-

Pm
f)s

N&f+ —, . (46)

Thus a single soliton solution will eventually appear
for all f such that —, &f & —,. Furthermore, if we

write f=1+5 (
~

5
~

& —, ), the asymptotic value of
the pulse amplitude p„, is given by

1.0-

Pm =f~po ~

where

(47)

f„=1+25 (48)

and the pulse shape settles down to

~
g„(x,r)

~

=p„sech p„
2Q

1/2

(49)

which agrees, at least qualitatively with the lower
bound amplitude p, /2 obtained from soliton theory.

(ii) For v/p& —1 the approximate variational
analysis predicts that the amplitude p will oscillate
as the inverse square root of the pulse width. This
implies that p will vary between the limits

In connection with these exact results we emphasize
the following points obtained from the approximate
analysis.

(i) The marginal case, for which nonlinear effects
are strong enough to stop the dispersive spreading, is
v/p= —1. The corresponding pulse amplitude p,
for fixed pulse width, is related to the soliton ampli-
tude p, as

I I I f
0.8 1.0 1.2 1.4

FIG. 7. Comparison between the numerically (Ref. 9)
obtained results for peak amplitudes p~ (0) and asymptot-
ic amplitudes p„(+ ), and the analytical predictions for
p. ( ) and pm —= (po+p~)/2 ( —.—.—.) as given by
Eq. (50).

denote the maximum (or in the case f &1 the
minimum) value of the amplitude in the first oscilla-
tion by pz. In Fig. 7 we compare the numerical re-
sults for p~ (from Ref. 9) with the corresponding
analytical prediction for p. as obtained from Eq.
(50). The agreement is seen to be quite good.

The variational analysis is unable to account for
the damping of the amplitude oscillations. Howev-
er, the natural choice for the asymptotic amplitude
limit would be the arithmetic mean of the upper and
lower amplitude bounds. Indeed, as Fig. 7 also
shows, the agreement between p

—=(po+p. )/2 and

p„ is remarkably good.

P=po=fps ~

P=P'=fP (2f
(50) VII. DYNAMIC PULSE WIDTH VARIATION

It is instructive to compare these predictions with
the results obtained in Ref. 9, where the evolution of
pulses of the form given by Eq. (45) was studied for
f values in the range f-0.8—1.4. The pulse ampli-
tude was found to perform a damped oscillatory
behavior towards the theoretically predicted asymp-
totic value determined by Eqs. (47) and (48). We

Although a qualitative discussion of the variation
of the pulse width was given in the preceding sec-
tions, we must solve Eq. (33), with H(y) given by
Eq. (34), in order to obtain quantitative information
on the dynamical variation of pulse width with dis-
tance of propagation. The formal solution of Eq.
(33) is obtained as
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+xt/2= I [(}tt+v)y —vy —p, ] '/dy . (51)

The explicit solution of Eq. (51) will be of two quali-
tatively different forms depending on whether II(y)
has one or two zeros, i.e., if v/p g —1 or v/p & —1.

A. Case I: v/p, & —1 (regions I and II)

In this case the evolution corresponds to a mono-
tonous spreading of the pulse and we obtain the full
solution in the implicit form

1 1x t/2p = (y —1) y +t/I+/ 1+/

1
1/2 2(I+/) (y —1) y—

1+
+ —,g(1+/) 3/ ln

2+(
(52)

where for convenience we have introduced g=v/}u.
The variation of pulse width, with distance of prop-
agation as determined by Eq. (52), is shown in Fig.
8. For large y, Eq. (52) and Fig. 8 imply an asymp-
totic straight-line dependence, viz. ,

y=x[2p(1+/)]'/

which reduces to the dispersive result [cf. Eq. (37)]
when (=0.

An important parameter is the characteristic dis-
tance xD required for the pulse width to become
twice its initial value. %e obtain..~2p= "+"""+&(I+()-'"

I+/ 2

1
2[(I+()(3+2))]'"+&+3(

2+/

I

Note that asymptotically we obtain [cf. Eq. (53)]
' 2/3

3x
2

B. Case II: v/p g —1 (regions III and IV)

The solution corresponds to an oscillation of the
pulse width between the limits y = 1 and

y =y. = —(1+v/p) '. Giving only the expressions
for the first half cycle we obtain

(a) —2 & v/}Lt & —1 (initial pulse spreading):

and the variation of xD with g is shown in Fig. 9.
Limit case: v/p = —l. In this limit case the solu-

tion becomes especially simple, viz. ,

2.0--

2
v 2}u=(y+2)t/y —1 . 5 5--

1.0--

05--

x P6t

FIG. 8. Variation of pulse width y with distance of
propagation x for different ratios of nonlinearity and
dispersion as expressed by the parameter g= v/Iu p —l.

12 18 20 24 28

FIG. 9. The variation of xn with g, where xn is the
characteristic distance of propagation at which the pulse
width has doubled and (=v/p characterizes the ratio of
nonlinearity to dispersion.
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[-(1+g)]'" 1+4

]/2

FIG. 10. Variation of pulse width compression factor y
with distance of propagation x for two values of initial

amplitude, f=1.25 and f=1.4, respectively.
0.8 1.0

I
I

1.2 1.4

FIG. 11. Comparison between numerically (Ref. 9) ob-

tained results for the period x~ of the amplitude oscilla-
tions (p) and the variationally obtained result ( )

given by Eq. (60).

+ —,4[—(1+4)] '" ~14'
I

xp ~2p =
I 1+(I 3/2 (59)

2(1+ )y—
X arcsin n /2—

2+)

(b) —2 & v/p (initial pulse compression):

xv2p= » (1—y) y+1 1

[-(1+4)]'" '+

+-, ([-(1+4)] '"

(57)

1/2
2mf

xp 2@=
(2f —1)

(60)

The period of oscillation xz as a function of f is
shown in Fig. 11, where points corresponding to nu-

merically obtained results (from Ref. 9) are also in-
serted. The agreement is again very good.

In order to compare with results obtained in Ref. 9,
we rewrite Eq. (59) in terms of the factor f [cf. Eq.
(45)]

X arcsin —n'/2 . (5g)
2(1+()y-

2+g

The variation of pulse width with distance of propa-
gation is given in Fig. 10 for initial pulse amplitudes
characterized by f=1.25 and f=1.4, respectively
[cf. Eq. (45)]. Since we have already discussed and
compared the results for the peak amplitudes and/or
pulse compression ratios, the remaining crucial com-
parison relates to the dynamical period of oscilla-
tion. From Eqs. (56) and (57) we obtain the period

xp as

VIII. CONCLUSION

With the present analysis we have demonstrated
the possibilities of a variational approach in connec-
tion with the nonlinear Schrodinger equation and
nonlinear pulse propagation in optical fibers. The
main results of the analysis can be summarized as
follows:

(i) The potential well description provides a clear
and physically suggestive picture of the dynamic
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balance between nonlinear and dispersive effects. In
particular, the qualitative results inferred from the
characteristic potential function II(y) are in good
agreement with exact results from inverse-scattering
theory and/or numerically obtained results.

(ii) Very good quantitative agreement is also
found for the evolution of optical pulses, whose ini-
tial pulse forms are "close" to the single soliton
shape, in the sense discussed in Secs. V and VI. In
particular, pulse width, pulse amplitude, and period
of amplitude oscillations are found to be in very
good agreement with numerically obtained results.

Thus, the present analysis should prove useful, not
only as a qualitative approach towards a better
physical understanding of the dynamics of nonlinear
pulse propagation in optical fibers, but also a quan-
titative tool, complementary to inverse-scattering
theory and numerical analysis.

Finally, we also want to emphasize that the non-
linear Schrodinger equation is truly universal, ap-
pearing as it does in almost every field of physics.
Thus, the presently obtained results have a much
wider area of applicability than simply pulse propa-
gation in optical fibers.
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