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Linear Partial Differential Equations

“However varied may be the imagination of man, nature is still a thousand times
richer, .... Each of the theories of physics ... presents (partial differential) equa-
tions under a new aspect ... without these theories, we should not know partial
differential equations.”

Henri Poincaré

“Since a general solution must be judged impossible from want of analysis, we
must be content with the knowledge of some special cases, and that all the more,
since the development of various cases seems to be the only way to bringing us at
last to a more perfect knowledge.”

Leonard Euler

1.1 Introduction

Partial differential equations arise frequently in the formulation of fundamental
laws of nature and in the mathematical analysis of a wide variety of problems in
applied mathematics, mathematical physics, and engineering science. This subject
plays a central role in modern mathematical sciences, especially in physics, ge-
ometry, and analysis. Many problems of physical interest are described by partial
differential equations with appropriate initial. and/or boundary conditions. These
problems are usually formulated as initial-value problems, boundary-value prob-
lems, or initial boundary-value problems. In order to prepare the reader for study
and research in nonlinear partial differential equations, a broad coverage of the
essential standard material on linear partial differential equations and their appli-
cations is required.

This chapter provides a review of basic concepts, principles, model equations,
and their methods of solutions. This is followed by a systematic mathematical
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treatment of the theory and methods of solutions of second-order linear partial
differential equations that gives the reader a clear understanding of the subject
and its varied applications. Linear partial differential equations of the second or-
der can be classified as one of the three types, hyperbolic, parabolic, and elliptic
and reduced to an appropriate canonical or normal form. The classification and
method of reduction are described in Section 1.5. Special emphasis is given to
various methods of solution of the initial-value and/or boundary-value problems
associated with the three types of linear equations, each of which shows an en-
tirely different behavior in properties and construction of solutions. Section 1.6
deals with the solutions of linear partial differential equations using the method
of separation of variables combined with the superposition principle. A brief dis-
cussion of Fourier, Laplace, and Hankel transforms is included in Sections 1.7—
1.10. These integral transforms are then applied to solve a large variety of initial
and boundary problems described by partial differential equations. The transform
solution combined with the convolution theorem provides an elegant representa-
tion of the solution for initial-value and boundary-value problems. Section 1.11
is devoted to Green’s functions for solving a wide variety of inhomogeneous par-
tial differential equations of most common interest. This method can be made
considerably easier by using generalized functions combined with appropriate in-
tegral transforms. The Sturm-Liouville systems and their general properties are
discussed in Section 1.12. Section 1.13 deals with energy integrals, the law of
conservation of energy, uniqueness theorems, and higher dimensional wave and
diffusion equations. The final section contains some recent examples of fractional
order diffusion-wave equations and their solutions.

1.2 Basic Concepts and Definitions

A partial differential equation for a function u (z, y, . . .) is a relationship between

u and its partial derivatives Uz, Uy, Uzz, Uzy, Uyy, - . . and can be written as
B (0 2000 i s s by Ui ) =0, (1.2:1)
where F is some function, =, v, ... are independent variables and u (z, v, . ..) is

called a dependent variable.

The order of a partial differential equation is defined in analogy with an ordi-
nary differential equation as the highest-order derivative appearing in (1.2.1). The
most general first-order partial differential equation can be written as

F(z,y,u,us,,u,) = 0. (12.2)

Similarly, the most general second-order partial differential equation in two
independent variables z, y has the form

F(Iuyxuaux1uysuxrau:ry-nuyy) :01 (123)

and so on for higher-order equations.
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For example,
Tuz +yuy =0, (1.2.4)
m1'-'5:1:"!'y“i-':y :$2+y2: (1.2.5)
Uy + U = U, (1.2.6)
ul ful =1, (1.2.7)
are first-order equations, and

Uz + 2Uzy + Uyy = 0, (1.2.8)
Ugg + Uyy = 0, (1.2.9)
Uy — gy = T {Et), (1.2.10)

are second-order equations. Finally,
Up + Uy + Uyze = 0, (1.2.11)
Ut + Uzzzz = 0, (1.2.12)

are examples of third-order and fourth-order equations, respectively.

A partial differential equation is called linear if it is linear in the unknown
function and all its derivatives with coefficients depend only on the independent
variables. It is called guasi-linear, if it is linear in the highest-order derivative of
the unknown function. For example, (1.2.4), (1.2.5), (1.2.8)—(1.2.10) and (1.2.12)
are linear equations, whereas (1.2.6) and (1.2.11) are quasi-linear equations.

It is possible to write a partial differential equation in the operator form

Lu(x) = f(x), (1:2.13)

where L, is an operator. The operator L. is called a linear operator if it satisfies
the property

L, (au+bv) =aL,u+bLyv (1.2.14)

for any two functions « and v and for any two constants a and b.

Equation (1.2.13) is called linear if L is a linear operator. Equation (1.2.13)
is called an inhomogeneous (or nonhomogeneous) linear equation. If f (x) = 0,
(1.2.13) is called a homogeneous equation. Equations (1.2.4), (1.2.8), (1.2.9), and
(1.2.12) are linear homogeneous equations, whereas (1.2.5) and (1.2.10) are linear
inhomogeneous equations. '

An equation which is not linear is called a nonlinear equation. If L. is not
linear, then (1.2.13) is called a nonlinear equation. Equations (1.2.6), (1.2.7) and
(1.2.11) are examples of nonlinear equations.

A classical solution (or simply a solution) of (1.2.1) is an ordinary function
u = u(x,y,...) defined in some domain D which is continuously differentiable
such that all its partial derivatives involved in the equation exist and satisfy (1.2.1)
identically.
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However, this notion of classical solution can be extended by relaxing the
requirement that u is continuously differentiable over D. The solution u =
u(z,y,...) is called a weak (or generalized) solution of (1.2.1) if w or its par-
tial derivatives are discontinuous in some or all points in D.

To introduce the idea of a general solution of a partial differential equation,

we solve a simple equation for u = u (z, y) of the form
gy =0, (1.2.15)
Integrating this equation with respect to z (keeping y fixed), we obtain
uy =h(y),

where h (y) is an arbitrary function of i. We then integrate it with respect to y to
find

u(z,y)=jh(y)dy+f(z>,

where f () is an arbitrary function. Or, equivalently,

u(z,y) =f(z)+9(), (1.2.16)

where £ (z) and g (y) are arbitrary functions. The solution (1.2.16) is called the
general solution of the second-order equation (1.2.15).

Usually, the general solution of a partial differential equation is an expression
that involves arbitrary functions. This is a striking contrast to the general solution
of an ordinary differential equation which involves arbitrary constants. Further,
a simple equation (1.2.15) has infinitely many solutions. This can be illustrated
by considering the problem of construction of partial differential equations from
given arbitrary functions. For example, if

u(z,t) = f(z—ct) +g(z+ct), (1.2.17)
where f and g are arbitrary functions of (z — ct) and (x + ct), respectively, then

Urz = [ (z—ct) + ¢ (z +ct),
wy = 2 f7 (z — ct) + g (z + ct) = Pugs,

where primes denote differentiation with respect to the appropriate argument.
Thus, we obtain the second-order linear equation, called the wave equation,

Usp — Cltgr = 0. (1.2.18)

Thus, the function u (z,t) defined by (1.2.17) satisfies (1.2.18) irrespective of the
functional forms of f (z — ct) and g (z + ct), provided f and g are at least twice
differentiable functions. Thus, the general solution of equation (1.2.18) is given
by (1.2.17) which contains arbitrary functions.

In the case of only two independent variables z, ¥, the solution u (z, y) of the
equation (1.2.1) is visualized geometrically as a surface, called an integral surface
in the (z,y,u) space.
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1.3 The Linear Superposition Principle

The general solution of a linear homogeneous ordinary differential equation of
order n is a linear combination of n linearly independent solutions with n arbitrary
constants. In other words, if uy (z), uz (z), .. ., uy (z) are n linearly independent
solutions of an n-th order, linear, homogeneous, ordinary differential equation of
the form

Lu(z) =0, (1.3.1)

then, for any arbitrary constants ¢1, €a,. . .,Cn,
T
u(z) = chuk (z) (1.3.2)
k=1

represents the most general solution of (1.3.1). This is called the linear superposi-
tion principle for ordinary differential equations. We note that the general solution
of (1.3.1) depends on exactly n arbitrary constants.

In the case of linear homogeneous partial differential equations of the form

Lou(x) =0, (133)

the general solution depends on arbitrary functions rather than arbitrary constants.
So there are infinitely many solutions of (1.3.3). If we represent this infinite set
of solutions of (1.3.3) by uy (x), ug (X), ..., s (X), ..., then the infinite linear
combinations

gy, ) , (1.3.4)
n=1

where ¢,, are arbitrary constants, in general, may not be again a solution of (1.3.3)
because the infinite series may not be convergent. So, for the case of partial differ-
ential equations, the superposition principle may not be true in general. However,
if there are only a finite number of solutions uy (x), ua (), ..., un (x) of the
partial differential equation (1.3.3), then

u(x) =Y eattn (%) (13.5)
n=1 .

again is a solution of (1.3.3) as can be verified by direct substitution. As with
linear homogeneous ordinary differential equations, the principle of 'superposition
applies to linear homogeneous partial differential equations and u (x) represents
a solution of (1.3.3), provided that the infinite series (1.3.4) is convergent and the
operator L, can be applied to the series term by term.

In order to generate such an infinite set of solutions u,, (x), the method of sep-
aration of variables is usually used. This method, combined with the superposition
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of solutions, is usually known as Fourier’s merhod, which will be described in a
subsequent section.

Another type of infinite linear combination is used to find the solution of a
given partial differential equation. This is concerned with a family of solutions
u (x, k) depending on a continuous real parameter k and a function ¢ (k) such that

b oo

f o (k) w(x, k) dk or/ o (k)u (x, k) dk (13.6)
a —0oQ

is convergent. Then, under certain conditions, this integral, again, is a solution.-

This may also be regarded as the linear superposition principle.

In almost all cases, the general solution of a partial differential equation is
of little use since it has to satisfy other supplementary conditions, usually called
initial or boundary conditions. As indicated earlier, the general solution of a linear
partial differential equation contains arbitrary functions. This means that there
are infinitely many solutions and only by specifying the initial and/or boundary
conditions can we determine a specific solution of interest.

Usually, both initial and boundary conditions arise from the physics of the
problem. In the case of partial differential equations in which one of the inde-
pendent variables is the time £, an initial condition(s) specifies the physical state
of the dependent variable u (x,t) at a particular time ¢ = fg or ¢ = 0. Often
u (x,0) and/or u, (x,0) are specified to determine the function u (x,t) at later
times. Such conditions are called the Cauchy (or initial) conditions. It can be
shown that these conditions are necessary and sufficient for the existence of a
unique solution. The problem of finding the solution of the initial-value problem
with prescribed Cauchy data on the line ¢ = 0 is called the Cauchy problem or the
initial-value problem.

In each physical problem, the governing equation is to be solved within a given
domain D of space with prescribed values of the dependent variable u (x, t) given
on the boundary 8D of D. Often, the boundary need not enclose a finite volume—
in which case, part of the boundary is at infinity. For problems with a boundary
at infinity, boundedness conditions on the behavior of the solution at infinity must
be specified. This kind of problem is typically known as a boundary-value prob-
lem, and it is one of the most fundamental problems in applied mathematics and
mathematical physics.

There are three important types of boundary conditions which arise frequently
in formulating physical problems. These are

(a) Dirichlet conditions, where the solution w is prescribed at each point of
a boundary 8D of a domain D). The problem of finding the solution of a given
equation L,u (x) = 0 inside D with prescribed values of u on @D is called the
Dirichlet boundary-value problem;

(b) Neumann conditions, where values of normal derivative g—z of the solution
on the boundary 8D are specified. In this case, the problem is called the Newmann
boundary-value problem;

(c) Robin conditions, where (2% + au) is specified on @D. The corresponding
problem is called the Robin boundary-value problem.
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A problem described by a partial differential equation in a given domain with
a set of initial and/or boundary conditions (or other supplementary conditions)
is said to be well-posed (or properly posed) provided the following criteria are
satisfied:

(i) existence: There exists at least one solution of the problem.

(ii) uniqueness: There is at most one solution.

(iii) stability: The solution must be stable in the sense that it depends continu-
ously on the data. In other words, a small change in the given data must produce
a small change in the solution.

The stability criterion is essential for physical problems. A mathematical prob-
lem is usually considered physically realistic if a small change in given data pro-
duces correspondingly a small change in the solution.

According to the Cauchy-Kowalewski theorem, the solution of an analytic
Cauchy problem for partial differential equations exists and is unique. However,
a Cauchy problem for Laplace’s equation is not always well-posed. A famous
example of a non-well-posed (or ill-posed) problem was first given by Hadamard.
Hadamard’s example deals with Cauchy’s initial-value problem for the Laplace
equation

V23U = Ugy +Uyy =0, 0<y<oo, z€R (1.3.7)

with the Cauchy data
1 ;
w(z,0) =0 and wuy(z,0)= (H) sinnz, (1.3.8)

where n is an integer representing the wavenumber. These data tend to zero uni-
formly as n — oc.
It can easily be verified that the unique solution of this problem is given by

1
u(z,y) = (}?) sinh ny sin nz. (1.3.9)

As n — oo, this solution does not tend to the solution © = 0. In fact, solution
(1.3.9) represents oscillations in & with unbounded amplitude n~2sinh ny which
tends to infinity as n — co. In other words, although the data change by an arbi-
trarily small amount, the change in the solution is infinitely large. So the problem
is certainly not well-posed, that is, the solution does not depend continuously on
the initial data. Even if the wavenumber n is a fixed, finite quantity, the solution
is clearly unstable in the sense that u (z,y) — oo as y — oo for any fixed z, such
that sin nx # 0.

On the other hand, the Cauchy problem (see Example 1.5.3) for the simplest
hyperbolic equation (1.5.29) with the initial data (1.5.35ab) is well-posed. As to
the domain of dependence for the solution, u (z,t) depends only on those values
of f(€) and g (€) for which z — ¢t < § < z + ct. Similarly, the Cauchy problems
for parabolic equations are generally well-posed.
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We conclude this section with a general remark. The existence, uniqueness,
and stability of solutions are the basic requirements for a complete description of a
physical problem with appropriate initial and boundary conditions. However, there
are many situations in applied mathematics which deal with ill-posed problems.
In recent years, considerable progress has been made on the theory of ill-posed
problems, but the discussion of such problems is beyond the scope of this book.

1.4 Some Important Classical Linear Model Equations -

We start with a special type of second-order linear partial differential equation
for the following reasons. First, second-order equations arise more frequently in a
wide variety of applications. Second, their mathematical treatment is simpler and
easier to understand than that of first-order equations in general. Usually, in almost
all physical phenomena, the dependent variable u = u (z,, z,t) is a function
of three space variables and time variable ¢. Included here are only examples of
equations of most common interest.

Example 1.4.1 The wave equation is

Upp — szzu =0, : (1.4.1)

where

2 92 2
v, -

=37 6—],12 + 322" (1.4.2)

and ¢ is a constant. This equation describes the propagation of a wave (or dis-
turbance), and it arises in a wide variety of physical problems. Some of these
problems include a vibrating string, vibrating membrane, longitudinal vibrations
of an elastic rod or beam, shallow water waves, acoustic problems for the velocity
potential for a fluid flow through which sound can be transmitted, transmission of
electric signals along a cable, and both electric and magnetic fields in the absence
of charge and dielectric.

Example 1.4.2 The heat or diffusion equation is
u — £V =0, (1.4.3)

where # is the constant of diffusivity. This equation describes the diffusion of
thermal energy in a homogeneous medium. It can be used to model the flow of a
quantity, such as heat, or a concentration of particles. It is also used as a model
equation for growth and diffusion, in general, and growth of a solid tumor, in
particular. The diffusion equation describes the unsteady boundary-layer flow in
the Stokes and Rayleigh problems and also the diffusion of vorticity from a vortex
sheet.
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Example 1.4.3 The Laplace equation is
Viu = 0. (1.4.4)

This equation is used to describe electrostatic potential in the absence of charges,
gravitational potential in the absence of mass, equilibrium displacement of an elas-
tic membrane, velocity potential for an incompressible fluid flow, temperature in
a steady-state heat conduction problem, and many other physical phenomena.

Example 1.4.4 The Poisson equation is
Vu=f(z,92), (1.4.5)

where f (z,v, z) is a given function describing a source or sink. This is an inho-
mogeneous Laplace equation, and hence, the Poisson equation is used to study all
phenomena described by the Laplace equation in the presence of external sources
or sinks.

Example 1.4.5 The Helmholtz equation is
V3u+ du =0, (1.4.6)

where A is a constant. This is a time-independent wave equation (1.4.1) with A as
a separation constant. In particular, its solution in acoustics represents an acoustic
radiation potential.

Example 1.4.6 The telegraph equation is in general form
Upr — CPUugy + 0ty +bu =0, (1.4.7)

where a, b, and ¢ are constants. This equation arises in the study of propagation
of electrical signals in a cable of transmission line. Both current I and voltage
V satisfy an equation of the form (1.4.7). This equation also arises in the prop-
agation of pressure waves in the study of pulsatile blood flow in arteries and in
one-dimensional random motion of bugs along a hedge.

Example 1.4.7 The Klein-Gordon (or KG) equation is

o\ 2
Cho + (L;: ) $h =0, (1.4.8)
where
62
O= o - &V (1.4.9)

is the d’ Alembertian operator, i (= 27h) is the Planck constant, and m is a con-
stant mass of the particle. Klein (1927) and Gordon (1926) derived a relativistic
equation for a charged particle in an electromagnetic field. It is of conservative
dispersive type and played an important role in our understanding of the elemen-
tary particles. This equation is also used to describe dispersive wave phenomena
in general.
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Example 1.4.8 The time-independent Schrodinger equation in quantum mechan-
ics is

R? 9 _
<%) Vo + (E—-V)y=0, (1.4.10)

where h (= 2h) is the Planck constant, m is the mass of the particle whose wave
function is ¥ (z, y, z,t), E is a constant, and V' is the potential energy. If V' = 0,
(1.4.10) reduces to the Helmholtz equation.

Example 1.4.9 The linear Korteweg—de Vries (or KdV) equation is

U + Qg + Btigze = 0, (1.4.11)

where o and 3 are constants. This describes the propagation of linear, long, water
waves and of plasma waves in a dispersive medium.

Example 1.4.10 The linear Boussinesq equation is

Uy — a*V3u — 32V2u, =0, (1.4.12)

where o and /3 are constants. This equation arises in elasticity for longitudinal
waves in bars, long water waves, and plasma waves.

Example 1.4.11 The biharmonic wave equation is

wy + 2V =0, (1.4.13)

where ¢ is a constant. In elasticity, the displacement of a thin elastic plate by
small vibrations satisfies this equation. When w is independent of time ¢, (1.4.13)
reduces to what is called the biharmonic equation

Viu = 0. (1.4.14)

This describes the equilibrium equation for the distribution of stresses in an elas-
tic medium satisfied by Airy’s stress function u (z,y, z). In fluid dynamics, this
equation is satisfied by the stream function 1 (z, v, z) in a viscous fluid fiow.

Example 1.4.12 The electromagnetic wave equations for the electric field E' and
the polarization P are

Eo (By — €3 Eza) + Pie = 0,
(P + w3 P) — EquwiE =0,

(1.4.15)
(1.4.16)

where & is the permittivity (or dielectric constant) of free space, wy is the natural
frequency of the oscillator, ¢g is the speed of light in a vacuum, and w;, is the
plasma frequency.
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1.5 Second-Order Linear Equations and Method of
Characteristics

The general second-order linear partial differential equation in two independent
variables z, y is given by

A“:r:r + Bumy + C'Uryy + Dux + Euy + Fu= G, (151)

where 4, B, C, D, E, F, and G are given functions of = and v or constants.

The classification of second-order equations is based upon the possibility of
reducing equation (1.5.1) by a coordinate transformation to a canonical or stan-
dard form at a point. We consider the transformation from z, y to &, 1 defined
by

E=o¢(z,y), n=4v(zv),

where ¢ and 1 are twice continuously differentiable and the Jacobian J (z,y) =
@1y — Yoy is nonzero in a domain of interest so that x, ¥ can be determined
uniquely from the system (1.5.2ab). Then, by the chain rule,

(1.5.2ab)

Up = Ugle T UpMz, Uy = ugly + Uny,
Uzz = u«EEEﬁ + 2ugnbane + umﬂ?g + ueze + Unlza,
Uyy = ugely + 2ugn€yTy + Uyl + Uelyy + UnTyy,
Ugebaby + Uen (Exmy + EuMe) + UnnTaTly + Ueay + UnTzy.

LT
Substituting these results in equation (1.5.1) gives

A*uge + B*ugy + C*upy + D*ug + E*upy + Fru=G*, (1.53)
where

A* = A€ + Be:&, + CEL
B* = 248z + B (€amy + &ynz) + 2CEymy,
C* = An? + Bn.n, + CnZ,
D" = A&yr + BEay + C&yy + DE: + EEy,
E” = ANgg + Bzy + Ciyy + Dz + Enpy,
F*=F and G*=3G."~
Now, the problem is to determine £ and 7 so that equation (1.5.3) takes the simplest
possible form. We choose £ and 7 such that A* = C* = 0 and B* # 0. Or, more
explicitly,
A* = AE2 + BE.g, + CEE =0, (1.5.4)
C* = An? + Bramy + Cn2 = 0. (1.5.5)
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These two equations can be combined into a single quadratic equation for( =&
orn

A (C—“)g +B (C—"> +C=0. (1.5.6)
Cy Cy

We consider level curves £ = ¢ (z,y) = constant = C; and n = ¥ (z,y) =
constant = Cq. On these curves

de = &xdz + &ydy =0,  dn = nzdz + nydy, (1.5.7ab)”

that is, the slopes of these curves are given by

By _ & By T (1.5.8ab)
dz & dz Ty

Thus, the slopes of both level curves are the roots of the same quadratic equation

which is obtained from (1.5.6) as

dy\® dy
A (EE) ~B (E) +C=0, (1.5.9)

and the roots of this equation are given by

fy L (B-}-\/B? = 4Ac) . (1.5.10ab)
de 2A\ —

These equations are known as the characteristic equations for (1.5.1), and their
solutions are called the characteristic curves or simply the characteristics of equa-
tion (1.5.1). The solution of the two ordinary differential equations (1.5.10ab) de-
fines two distinct families of characteristics ¢ (z,y) = C; and ¥ (z,y) = Ca.
There are three possible cases to consider.

Casel. B2 —4AC > 0.

Equations for which B? — 4AC > 0 are called hyperbolic. Integrating
(1.5.10ab) gives two real and distinct families of characteristics ¢ (x,y) = C; and
1 (z,y) = Ca, where C; and C are constants of integration. Since A* =C* =0,
and B* # 0, and dividing by B*, equation (1.5.3) reduces to the form

ik
ugy = — 5= (D'ug + B'up + Fru— G*) = Hi (say) . (151D

This is called the first canonical form of the hyperbolic equation.
If the new independent variables

are introduced, then
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Ug = UaO¢ T+ u'@ﬁg = Ug + Ug, Uy = UaQy T U5,5,1 = Ug — Ug
(“n)g = (up), e + ('“'n),ﬁ Be = (ua —ug)y 1+ (va — uﬁ)ﬁ -1
= Uga — UGG

Consequently, equation (1.5.11) becomes
Una — Uag = Ha (@, B, 1, g, ug) . (1.5.13)

This is called the second canonical form of the hyperbolic equation.
It is important to point out that characteristics play a fundamental role in the
theory of hyperbolic equations.

CaseIL. B? — 4AC = 0.
There is only one family of real characteristics whose slope, due to (1.5.10ab),
is given by

dy B
o S (1.5.14)

Integrating this equation gives £ = ¢ (z, y) = const. (or 7 = ¢ (z, y) = const.).
Since B? = 4AC and A* = 0, we obtain
2
0= A* = A2 + BL,£, +CE2 = (\/ng + \/Egy) .
It then follows that

B* =24&,m; + B (Exny + &) + Céymy
—9 (\/Zgr + \/Egy) (x/ZnI + xfany) -0

for an arbitrary value of 77 which is independent of &£. For example, if 7 = ¥, the
Jacobian is nonzero in the domain of parabolicity.
Dividing (1.5.3) by C* £ 0 yields

Uny = H3 (€, m, 1, ue, up) . (1:5.15)

This is known as the canonical form of the parabolic equation.
On the other hand, if we choose 7 =.¢ (z,y) = constant as the integral of
(1.5.14), equation (1.5.3) assumes the form

Uge = H:; (5177, u,_uf,u,]) . (1516)

Equations for which B? — 4AC = 0 are called parabolic.

Case IIL. B? — 4AC < 0.

Equations for which B2 — 4AC < 0 are called elliptic. In this case, equations
(1.5.10ab) have no real solutions. So there are two families of complex charac-
teristics. Since roots £, 7 of (1.5.10ab) are complex conjugates of each other, we
introduce the new real variables as



14 I Linear Partial Differential Equations
1 1
a=3E+m, B=5E=), (1.5.17ab)
T
sothat { = a+ifandn = o —if.
We use (1.5.17ab) to transform (1.5.3) into the form
A Ugq + B™uap + C ™ ugg = Hy (0, 8,4, Ua, ug) (1.5.18)

where the coefficients of this equation assume the same form as the coefficients
of (1.5.3). It can easily be verified that A* = 0 and C* = 0 take the form .

A —C*™HiB*" =0
which are satisfied if and only if
A = and B =0;

Thus, dividing by A**, equation (1.5.18) reduces to the form

Uga +UGE = ﬂzHS (a,ﬁ,u,u&,ug). (1.5.19)

A**
This is called the canonical form of the elliptic equation.
In summary, we state that the equation (1.5.1) is called hyperbolic, parabolic,
or elliptic at a point (g, yo) accordingly as

B? (zq,y0) — 4A (20, %0) C (20, %0) > = < 0. (1.5.20)

If it is true at all points in a given domain, then the equation is said to be Ayper-
bolic, parabolic, or elliptic in that domain. Finally, it has been shown above that,
for the case of two independent variables, a transformation can always be found to
transform the given equation to the canonical form. However, in the case of several
independent variables, in general, it is not possible to find such a transformation.

These three types of partial differential equations arise in many areas of math-
ematical and physical sciences. Usually, boundary-value problems are associated
with elliptic equations, whereas the initial-value problems arise in connection with
hyperbolic and parabolic equations.

Example 1.5.1 Show that

(a) the wave equation u;; — c?uz. = 0 is hyperbolic,

(b) the diffusion equation u; — ku,, = 0 is parabolic,

(c) the Laplace equation ©.z + uy, = 0 is elliptic,

(d) the Tricomi equation U, + Ty, = 0 is elliptic for z > 0, parabolic for
x = 0, and hyperbolic for z < 0.

For case (a) A = —c%, B = 0, and C = 1. Hence, B> — 4AC = ¢ > 0
for all = and ¢. So, the wave equation is hyperbolic everywhere. Similarly, the
reader can show (b) and (c). Finally, for case (d), A = 1, B = 0, C = z, hence,
B2 — 4AC = —4z < 0,=0, or > 0 accordingly as x > 0,z = 0, or z < 0, and
the result follows.
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Example 1.5.2 Find the characteristic equations and characteristics and then re-
duce the equation

T gy + Uyy = z> (1.5.21)

to canonical form.

In this problem, A = z, B = 0,C = 1, B*—4AC = —4x. Thus, the equation
is hyperbolic if z < 0, parabolic if z = 0, and elliptic if = > 0.

The characteristics equations are

dy B+VBP—d4AC 1

e Y + = (1.5.22ab)
Hence,
y = +2v/—z = constant = + 2v/—z + ¢,
or
£ =y + 2v/—z =constant, 7 =y — 2v/—z = constant. (1.5.23ab)
These represent two branches of the parabolas (y — 0)2 = —4z where cis a con-

stant. The former equation (£ = constant) gives a branch with positive slopes,
whereas the latter equation (n = constant) represents a branch with negative
slopes as shown in Figure 1.1. Both branches are tangent to the y-axis which is
the single characteristic in the parabolic region. Indeed, the y-axis is the envelope
of the characteristics for the hyperbolic region = < 0.

For z < 0, we use the transformations

E=y+2y/—xz, n=y—2v—=x (1.5.24ab)
to reduce (1.5.21) to the canonical form.
We find
1 1 1
£r=— =g ‘Ey =1, &= _‘5 (—-33)3/2’ 'Eyy =0,
1 1 1

e =+ = =1, e = 5 vy =0,
(E-m)=4/—z and (£—n)*=(162)".
Consequently, the equation
TUzy + Uyy = z?

reduces to the form

T (U«seﬁz + 2ugnéate + Urm’?i + ugler + unnm)
2
+ (u&&i + 2ugn€yMy + UnyTly + velyy + Usllgy) =27



16 1 Linear Partial Differential Equations

A

Pox

Sy,

Figure 1.1 Characteristics are parabolas for z < 0.

Or,

T

+ [ugg + 2uey + Unn) = ™,

This leads to the transformed equation which is

gy + 5 (g = ) = oy (€ =)',
or
11 s
ugn = 7 (16)2(5—77) G n)(uﬁ_“n)-

This is the first canonical form.
For = > 0, we use the transformations

E=y+2iVz, n=y—-2ivz

so that

1

a=1(E+n) =y, f=5(E-1=2/F

1

1 1 1 1 1 1
Uge (——> + 2ugy (‘) — U (') — e el T 5 v
T T T 2 (—z) 2 (—z)

(1.5.25)

(1.5.26ab)
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Clearly,

ar=0, ap=1, az:=0oay=0, Oy = 0,

1 L &
ﬁrzﬁ: ﬁy:ou ﬁmm:_ﬁma ﬁyyjo'

So, equation (1.5.21) reduces to the canonical form

I (ucrcaai + Quaﬁazﬁz + u,ﬁ,ﬂﬁg + Uarr + u,@ﬁ:x)
4
B
+ (“aaai + 2uapoy Py + “85»63 + Ualyy +upfyy) = (‘2‘ )

or

(1.5.27)

This is the desired canonical form of the elliptic equation.
Finally, for the parabolic case (z = 0), equation (1.5.21) reduces to the canon-
ical form

Uy =0. (1.5.28)

In this case, the characteristic determined from % = 0is x = 0. That is, the y-
axis is the characteristic curve, and it represents a curve across which a transition
from hyperbolic to elliptic form takes place.

Example 1.5.3 (The Cauchy Problem for the Wave Equation). The one-dimensional
wave equation

(1.5.29)

Upp — CoUgy = 0

is a special case of (1.5.1) with A = —c?, B = 0, and C = 1. Hence, B* —
4AC = 4¢* > 0, and therefore, the equation is hyperbolic, as mentioned before.
According to (1.5.10ab), the equations of characteristics are

dt 1
=4, (1.5.30)
dx c
Or
£ = x — ct = constant, 7 = x + ct = constant. (1.5.31ab)

This shows that the characteristics are straight lines in the (z, t)-plane. The former
represents a family of lines with positive slopes, and the latter a family of lines
with negative slopes in the (x, t)-plane. In terms of new coordinates & and 77, we
obtain
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Uz = Uge + 2Ugn + Upn,  Use = 2 (uege — 2ugy + Uny)
so that the wave equation (1.5.29) becomes
—4ctug, = 0. (1.5.32)
Since ¢ # 0, ug, = 0 which can be integrated twice to obtain the solution

w(&n)=oE)+¥ ), (1.5.33)

where ¢ and 1) are arbitrary functions. Thus, in terms of the original variables, we
obtain

u(z,t) =¢(x—ct)+9(z+ct). (1.5.34)

This represents the general solution provided ¢ and 1 are arbitrary but twice dif-
ferentiable functions. The first term @ (x — ct) represents a wave (or disturbance)
traveling to the right with constant speed ¢. Similarly, 1 (x - ct) represents a wave
moving to the left with constant speed . Thus, the general solution u (z, t)is a
linear superposition of two such waves.

The typical initial-value problem for the wave equation (1.5.29) is the Cauchy
problem of an infinite string with initial data

w(z,0) = f(z), wu(z,0)=g(z), (1.5.35ab)

where f(z) and g (z) are given functions representing the initial displacement
and initial velocity, respectively. The conditions (1.5.35ab) imply that

¢ (z) + ¢ (z) = f(2), (1.5.36)

—c¢ (z) + e’ (z) = g (2), (1.5.37)

where the prime denotes the derivative with respect to the argument. Integrating
equation (1.5.37) gives

T

—ebla) e ()= / g(r)dr, (1.5.38)

To

where zg is an arbitrary constant. Equations (1.5.36) and (1.5.38) now yield

Bl) =2 f T fg(r)df

27V B )
V@) =3/ @ +5 | a0

Obviously, (1.5.34) gives the so called d’Alembert solution of the Cauchy problem
as

z+tect

I (zfct)nlf(z—l-ct)]—i-%/ g(r)dr. (15.39)

T—ct

B =

4=
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I

u=f(x)

L 1
27t‘(x+«:l) Ef(x{l)

WAVILVAN

Figure 1.2 Splitting of initial data into equal waves.

It can be verified by direct substitution that u (, t) satisfies equation (1.5.29) pro-
vided f is twice differentiable and g is differentiable. Further, the d’Alembert
solution (1.5.39) can be used to show that this problem is well posed. The solution
(1.5.39) consists of terms involving f (z+ct) and the term involving the integral
of g. Both terms combined together suggest that the value of the solution at po-
sition « and time ¢ depends only on the initial values of f (z) at points z-+ct and
the value of the integral of g between these points. The interval (z — ct, = + cf)
is called the domain of dependence of (z,t). The terms involving f (z4ct) in
(1.5.39) show that waves are propagated along the characteristics with constant
velocity c.

In particular, if g () = 0, the solution is represented by the first two terms in
(1.5.39), that is,

w(z,t) = % [f (z — ct) + f (z + ct)].. (1.5.40)

Physically, this solution shows that the initial data is split into two equal waves,
similar in shape to the initial displacement, but of half the amplitude.

These waves propagate in the opposite direction with the same constant speed
¢ as shown in Figure 1.2.

To investigate the physical significance of the d’Alembert solution, it is con-
venient to rewrite the solution in the form

T—cl 1 r+ct
s =i -o [ adrigferarg [ e

2c e
(1.5.41)
=& (x—ct)+¥(z+ect), (1.5.42)
where
I 75 1 1 M
0@ =3O -5 [ 9man ¥y =35+ [ 9@ dr s
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ul

u=P(x) u=@(x—ct) u=P(x—2ct)

0 X X+ct x+2ct

Figure 1.3 Graphical representation of solution.

Physically, & (z — ct) represents a progressive wave propagating in the positive
z-direction with constant speed ¢ without change of shape as shown in Figure 1.3.
Similarly, ¥ (x -+ ct) also represents a progressive wave traveling in the negative
z-direction with the same speed without change of shape.

A more general form of the wave equation is
gy — 02 (T) Ugg = 0, (1.5.44)

where a is a function of z only. The characteristic coordinates are now given by

* odr = odr

Thus,

1
Uy = 75&5 -+ Eum U = ’LL§ -+ 'L',n,

@’ (x)

2

1
Uz = ] (uge — 2ugn + Unn) — (ug — ug) 4

Uty = ugg + 2Ugn + Uny-
Consequently, equation (1.5.44) reduces to

due, +a’ (z) (uy —ue) = 0. (1.5.46)
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In order to express a’ in terms of £ and 7, we observe that

® dr
—g=2 = 5.4
o—k / o (1.5.47)
so that = is a function of (7 — &). Thus, a’ (z) will be some function of (17 — £).
In particular, if a(z) = Az™, where A is a constant, so that o' (z) =

n Az™1, and when n 5 1, result (1.5.47) gives
Y 1

—¢= 2 1.5.48
A Sy e g (345
so that
2n 1
a(z) = ——vr ——.
) (n—1) n-¢
Thus, equation (1.5.46) reduces to the form
2n 1
dugn — ty —ug) =0
- -8
Finally, we find that
u - L ) (1.5.49)
= (U, — ug). 8
EFICEE R R

Whenn = 1, a(z) = Az, and a’ (z) = A, substituting £ = § and = % can be
used to reduce equation (1.5.46) to

(ue —ug). (1.5.50)

IS

Uag =

Equation (1.5.49) is called the Euler—Darboux equation which has the hyper-
bolic form

m

Usy = T (uz —uy), (L350
where m is a positive integer.
We next note that
82 a du
sz (@)= 2 =) 55 —u] = (o= )y 1y = ).

(1.5.52)
When m = 1, equation (1.5.51) becomes

(T —Y) Uzy = Uz — Uy
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so that (1.5.52) reduces to
52

m [(z —y)u] =0. (1.5.53)

This shows that the solution of (1.5.53) is (z — y) u = & (z) + ¢ (v). Hence, the
solution of (1.5.51) with m = 11is

u (_2;, y) = M’ (1_5_54)
r—y
where ¢ and v are arbitrary functions.
We multiply (1.5.51) by (z — ), and apply the derivative %Z,y, so that the
result is, due to (1.5.52),

L+ (2= L) e =m (-2
(= Y) 5ay V) F\ 5y ~ 3z ) M) =™ 5 "By ) Y

Or
oF a o]
(I — y) —azay ('U»J:y) = {m - 1) (a = 3—1.,') (’U.my) & (1555}

Hence, if u is a solution of (1.5.51), then u4, is a solution of (1.5.51) with m
replaced by m + 1. When m = 1, the solution is given by (1.5.54), and hence, the
solution of (1.5.51) takes the form

g2m—2 Fﬁ (z)+¢ (y)} ’

Zm—laymfl T—Y

i) = 3 (1.5.56)

where ¢ and 1) are arbitrary functions.

1.6 The Method of Separation of Variables

This method combined with the principle of superposition is widely used to solve
initial boundary-value problems involving linear partial differential equations.
Usually, the dependent variable w (z, y) is expressed in the separable u (z,y) =
X (z)Y (y) where X and Y are functions of z and y, respectively. In many cases,
the partial differential equation reduces to two ordinary differential equations for
X and Y. A similar treatment can be applied to equations in three or more inde-
pendent variables. However, the question of separability of a partial differential
equation into two or more ordinary differential equations is by no means a trivial
one. In spite of this question, the method is widely used in finding solutions of a
large class of initial boundary-value problems. This method of solution is known
as the Fourier method (or the method of eigenfunction expansion). Thus, the pro-
cedure outlined above leads to the important ideas of eigenvalues, eigenfunctions,
and orthogonality, all of which are very general and powerful for dealing with lin-
ear problems. The following examples illustrate the general nature of this method.

1.6 The Method of Separation of Variables 23

Example 1.6.1 (Transverse Vibration of a String). We consider the one-dimensional
linear wave equation

Ugy = CUp, Ozt 0, (1.6.1)

where ¢ = T*/p, T* is a constant tension, and p is the constant line density of
the string. The initial and boundary conditions are

u(z,0) = f(z), u(z,0)=g(z), 0<z<4, (1.6.2ab)
w(0,t) =0=u(£,t), t>0, (1.6.3ab)

where f and g are the initial displacement and initial velocity, respectively.
According to the method of separation of variables, we assume a separable
solution of the form

w(z,t) =X (z) T (t) £0, (1.6.4)

where X is a function of = only, and T is a function of ¢ only.
Substituting this solution in equation (1.6.1) yields

14X 14T
X dz2 2T di?’
Since the left side of this equation is a function of z only and the right-hand side is
a function of ¢ only, it follows that (1.6.5) can be true only if both sides are equal
to the same constant value. We then write
1d°X 1 d&°T _
X dz2 — 2T a2 7

(1.6.5)

(1.6.6)

where A is an arbitrary separation constant. Thus, this leads to the pair of ordinary
differential equations

d2X aT L,
S5 =X, =T (1.6.7ab)

We solve this pair of equations by using the boundary conditions which are ob-
tained from (1.6.3ab) as

u(0,t) =X (0)T(#)=0 for t>0, (1.6.8)
u(ft) =X ()T ()=0 for t>0. (1.6.9)

Hence, we take T (t) # 0 to obtain
X(0)=0=X(0). (1.6.10ab)

There are three possible cases: (i) A > 0, (ii) A = 0, (iii) A < 0.
For case (i), A = a? > 0. The solution of (1.6.7a) is
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X (z) = Ae™™ + Be ", (1.6.11)

which together with (1.6.10ab) leads to A = B = 0. This leads to a trivial solution

u(z,t) = 0.

Tor case (ii), A = 0. In this case, the solution of (1.6.7a) is
X (z) = Az + B. (1.6.12)

Then. we use (1.6.10ab) to obtain A = B = 0. This also leads to the trivial
solution u (z,t) = 0.

For case (iii), A < 0, and hence, we write A = —a? 50 that the solution of
equation (1.6.7a) gives

X = Acosaz + Bsinar, (1.6.13)
whence, using (1.6.10ab), we derive the nontrivial solution
X (z) = Bsinaz, (1.6.14)
where B is an arbitrary nonzero constant. Clearly, since B # 0 and X (£) =0,
sinaf = 0, (1.6.15)

which gives the solution for the parameter c

nmw

a:an:(T), n=10% ... (1.6.16)

Note that n = 0 (@ = 0) leads to the trivial solution u (z,¢) = 0, and hence, the
case n = 0 is to be excluded.

Evidently, we see from (1.6.16) that there exists an infinite set of discrete
values of « for which the problem has a nontrivial solution. These values o,
are called the eigenvalues, and the corresponding solutions are

Xo(z) = Bn Sm(m; ) (1.6.17)

We next solve (1.6.7a) with A = —a2 to find the solution for T, (¢) as
T (t) = C,, cos (anct) + Dy sin (anct) (1.6.18)

where C., and D,, are constants of integration. Combining (1.6.17) with (1.6.18)
yields the solution from (1.6.4) as

nct 3 nmct . (MTT
#hy (i )= {an cos ( 7 ) + by, sin (T)] sin (T) , (1.6.19)

where a, = CpBn, by = B, D,, are new arbitrary constants andn = 1,2,3,.. ..
These solutions ., (z,t), corresponding to eigenvalues o, = (2F), are called
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the eigenfunctions. Finally, since the problem is linear, the most general solution
is obtained by the principle of superposition in the form

. i t
u(z,t) = Z (an cos 25 4 b, sin %) sin (H—T) . (1.6.20)
n=1

provided the series converges and it is twice continuously differentiable with re-
spect to = and t. The arbitrary coefficients a,, and b, are determined from the
initial conditions (1.6.2ab) which give

u(z,0) Z an Sin ( ) ; (1.6.21)
u; (2,0) = g (z) = ('L’;—c) Z nby, sin (i;ff) . (1.6.22)
n=1

Either by a Fourier series method or by direct multiplication of (1.6.21) and
(1.6.22) by sin (mg:) and integrating from 0 to £, we can find a,, and b;, as

2 £ . (NTE
Gn =7 f I (= sm ) dz, by = — g(z)sin (T) dx,(1.6.23ab)

nme Jo

in which we have used the result

foe sin (5~ ) sin () do = gém, (1.6.24)

where 8n are Kronecker delta. Thus, (1.6.20) represents the solution where a,
and b,, are given by (1.6.23ab). Hence, the problem is completely solved.

We examine the physical significance of the solution (1.6.19) in the context of
the free vibration of a string of length £. The eigenfunctions

Uy (7,t) = (an coswpt + by, sinw,t) sin (?) ; (wn = mr::) (1.6.25)
are called the nth nermal modes of vibration or the nth harmonic, and wn repre-
sents the discrete spectrum of circular (or radian) frequency or v, = 5% = 7,
which are called the angular frequencies. The first harmonic (n = 1) is called the
fundamental harmonic and all other harmonics (n > 1) are called overtones. The
frequency of the fundamental mode is given by

L= ae, i ) (1.6.26ab
1= 1= QE’ .6.26ab)

Result (1.6.26ab) is considered the fundamental law (or Mersenne law) of a
stringed musical instrument. The angular frequency of the fundamental mode of
transverse vibration of a string varies as the square root of the tension, inversely as
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n=1
n=3
0 ! ’
n=2

Figure 1.4 Several modes of vibration in a string.

the length, and inversely as the square roat of the density. The period of the fun-
damental mode is T} = f;—’]‘ = %’, which is called the fundamental period. Finally,
the solution (1.6.20) describes the motion of a plucked string as a superposition
of all normal modes of vibration with frequencies which are all integral multiples
(wn =nw; or v, =mnw) of the fundamental frequency. This is the main rea-
son for the fact that stringed instruments produce more sweet musical sounds (or
tones) than drum instruments.

In order to describe waves produced in the plucked string with zero initial
velocity (u; (z,0) = 0), we write the solution (1.6.25) in the form

1
un (z,t) = a, sin (n_vgsc) cos (nzc ) s = 1525800 (LG:2T)

These solutions are called standing waves with amplitude a,, sin (“’f), which
vanishes at

o=

£ 2
z=0, — — ..., 4
non
These are called the nodes of the nth harmonic. The string displays n loops sepa-
rated by the nodes as shown in Figure 1.4.
It follows from elementary trigonometry that (1.6.27) takes the form

1 i) T
A (i )= §an [sin Tﬂ— (z — et) +sin -ﬂe— (z+ ct)} . (1.6.28)
This shows that a standing wave is expressed as a sum of two progressive waves of
equal amplitude traveling in opposite directions. This result is in agreement with
the d’ Alembert solution.

Finally, we can rewrite the solution (1.6.19) of the nth normal modes in the
form
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Uy (%) = é,8in (?) cos (m;ct — En) , (1.6.29)

1
where ¢, = (a2 +b2)? and tan &, = (—E‘L:)

This solution represents transverse vibrations of the string at any point z and
at any time ¢ with amplitude ¢, sin (”%) and circular frequency w,, = 25<. This
form of the solution enables us to calculate the kinetic and potential energies of
the transverse vibrations. The total kinetic energy (K.E.) is obtained by integrating

with respect to = from 0 to £, that is,

i Au,, \ 2
 — KB.=| =p| 2 . 6.
K E /0 zp( 815) dx (1.6.30)

where p is the line density of the string. Similarly, the total potential energy (P.E.)
is given by

yi 2
V,=PE. = ET*f (%> dz. (1.6.31)
2 o \ Oz

Substituting (1.6.29) in (1.6.30) and (1.6.31) gives

2 ¢ £
Kn%p(%%) smz(”'f _En) f sin? (72 da

2.2
C 1 1
=P 4; (n cn)2 sin? (?17;6 _ En) _ ZPB“’?LC% sin? (wnt — &1) , (16.32)
where w, = 7€,
Similarly,
1 2 rt ¢
W, = = (mrcn) sl | T 5 cos? (mrss) e
2 £ ¢ . 7
T et

1
17 (ncy)? cos? <n£ - en) = prwici cos? (Wnt — €n) . (1.6.33)

Thus, the total energy of the nth normal modes of vibrations is given by
1
E,=K,.+V,= ZpE (wncn)2 — constant. (1.6.34)
For a given string oscillating in a normal mode, the total energy is proportional to

the square of the circular frequency and to the square of the amplitude.
Finally, the total energy of the system is given by

o0 [= )
= = 1 2.2
E = ;En = pr.’nz_:lwncn, (1.6.35)

which is constant because E,, = constant.
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Example 1.6.2 (One-Dimensional Diffusion Equation). The temperature distribu-
tion u (z,t) in a homogeneous rod of length £ satisfies the diffusion equation

up= Kzz; 0<z<d, t>0, (1.6.36)
with the boundary and initial conditions

w(0,t) =0=u(lt), t>0 (1.6.37ab)

u(z,0) = f (z), D<x<{, (1.6.38)

where « is a diffusivity constant.
We assume a separable solution of (1.6.36) in the form

u(z,t) =X ()T (t) #0. (1.6.39)
Substituting (1.6.39) in (1.6.36) gives
1d*°X 14T
YT = T (1.6.40)

Since the left-hand side depends only on = and the right-hand side is a function
of time t only, result (1.6.40) can be true only if both sides are equal to the same
constant A. Thus, we obtain two ordinary differential equations

42X dT

e, = it =0. 1.6.41ab
= AX =0 7 AT =0 (1.6.41ab)
For A = 0, the only solution of the form (1.6.39) consistent with the given bound-
ary conditions is u (z,t) = 0. Hence, for negative A = —a?,
d?X 2 dT’ 5
W—i—a X=0, :_E—Q—ﬁa T'=10; (1.6.42ab)

which admit solutions as
X (z) = Acosaz + Bsinazx (1.6.43)
and
T(t)=Cexp (—ﬁazt) ) (1.6.44)

where A, B, and C are constants of integration.
The boundary conditions for X (z) are

X(0)=0=X (), (1.6.45)

which are used to find A and B in solution (1.6.43). It turns out that A = 0 and
B £ 0. Hence,
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sin af = 0, (1.6.46)
which gives the eigenvalues
a:anﬁ%, n=1,23,.... (1.6.47)

The value n = 0 is excluded because it leads to a trivial solution. Thus, the eigen-
functions are given by

X, (z) = Bysin (”—?) , (1.6.48)

where B, are nonzero constants.
With @ = @, = 2, we combine (1.6.44) with (1.6.48) to obtain the solution
for u, (z,t) as

nmwT

nmy 2 .
Un (z,t) = apexp I:— (T) fst] sin (T) , (1.6.49)
where a,, = B,C, is a new constant. Thus, (1.6.47) and (1.6.49) constitute an

infinite set of eigenvalues and eigenfunctions. Thus, the most general solution is
obtained by the principle of superposition in the form

o
nw\ 2 . [/NTT
u(z,t) = ; (n EXP [f (7) f{,t:l sin (—E_) : (1.6.50)
Now, the initial condition implies that
> . [(NTT
flz)= Z Gn Sin (T) - (1.6.51)
n=1
which determines a,,, in view of (1.6.24), as

£
Gy = %/; F (z) sin (%) dz. (1.6.52)

Thus, the final form of the solution is given by

w1 = 52 2 [ ean (M5 ) ax e [ (3] n (255).

(1.6.53)

It follows from the series solution (1.6.53) that the series satisfies the given bound-
ary and initial conditions. It also satisfies the equation (1.6.36) because the series
is convergent for all z (0 < 2z < £) and ¢t > 0 and can be differentiated term by
term. Physically, the temperature distribution decays exponentially with time t.
This shows a striking contrast to the wave equation, whose solution oscillates in
time t. The time scale of decay for the nth mode is Ty ~ £ (£) ? which is directly
proportional to £2 and inversely proportional to the thermal diffusivity.
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The method of separation of variables is applicable to the wave equation and ’

the diffusion equation, and also to problems involving Laplace’s equation and
other equations in two or three dimensions with a wide variety of initial and
boundary conditions. We consider the following examples.

Example 1.6.3 (Two-Dimensional Diffusion Equation). We consider

Uy = K (Upp +Ugy), 0<z<a, 0<y<d (>0, (1654

u(z,y,t) = flz,y) at t=0, (1.6.33)

u(z,y,t) =0 on 4D, (1.6.56)
where 8D is the boundary of the rectangle defined by 0 <z < a,0 <y <h.

The method here is precisely the same as in the previous examples except that
we seek a solution of (1.6.54) in the form

u(z,y,2z) =S (z,y) T (t) #£0, (1.6.57)

so that S and T satisfy the equations

s 828

S ke 6.58

= gt 5=0, (1.6.58)
% + kAT = 0. (1.6.59)

For A < 0, the separable solution (1.6.57) with the given boundary data leads
only to a trivial solution u (z, y,t) = 0. Hence, for positive A, we solve (1.6.58),
(1.6.59) subject to the given boundary and initial conditions. Equation (1.6.58)
is an elliptic equation, and here we seek a solution S (z,y) which satisfies the
boundary conditions

S(0,y)=0=8(a,y) for 0<y<h, (1.6.60)
S(z,0)=0=5(z,b) for 0<z<a. (1.6.61)

We also seek a separable solution of (1.6.58) in the form
S(z,y) =X (2)Y () #0 (1.6.62)
and find that X (z) and Y (y) satisfy the equation
X.'.' YH

il —+x=0
b + v + 3
that is,
X.'.' YH
s e [ e WY 1.6.63
= (Y + ) (16:63)
Or

1.6 The Method of Separation of Variables 31
X'+pX =0 Y'+AX—p¥Y=0 (1.6.64ab)
These equations have to be solved with the boundary conditions

X (0)=0= X (a) } (1.6.65ab)

Y (0)=0=Y ()
The eigenvalue problem (1.6.64ab) with (1.6.65ab) gives the eigenvalues

iy (ﬂjz (1.6.66)

a

and the corresponding eigenfunctions

Xom () = Ay sin (m”) , (1.6.67)
a
when m = 1,2, 3, .... Thus, equation (1.6.64b) becomes
Y+ (A—pm)Y =0, (1.6.68)

which has to be solved with (1.6.65b). This is another eigenvalue problem similar
to that already considered and leads to the eigenvalues

(%’5)2 (1.6.69)

and the corresponding eigenfunctions

. /nmy
b2 =B, —
() sm( 5 ) ; (1.6.70)
where n = 1, 2, 3, . . .. In other words, the solution of equation (1.6.58) becomes
S (2,) = X, (2) Y, A . /mmTN . (Y
(,y) () Y (y) = Amn sin ( . )sm (_b ) , (L6.71)

where A, = A, B, are constants together with the eigenvalues

nwy 2 m? n?
A11'L:r1. = Hm (_') = || #= I5 .
Wirr + A ((12 + bz) T, (1.6.72)

wherem=1,2,3,...andn=1,2,3,....
With A, as eigenvalues, we solve (1.6.59) to obtain

Tonn (£) = Bpan exp (—Amnkt) , (1.6.73)
where B,,,, are integrating constants.

Finally, the solution (1.6.57) can be expressed as a double series

oo o0

w(z,y,t) = Z Gy SIDL TTEY sin (22¥ exp (—Amnkt), (1.6.74)
| a b

m=1n=
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where anmy, are constants to be determined from the initial condition so that

f(z,y) =u(z,y,0 —ZZamnsm( )s' (nby) (1.6.75)

m=1n=1

To find constants a,,, we multiply (1.6.75) by sin ("”) and integrate the
result with respect to z from 0 to a with fixed y, so that

3 Zamnsm mry / fz,v) sm

The right-hand side is a function of y and is set equal to g (y), so that

) dz.  (1.6.76)

/ flz,v) sm )d:c =g(y). (1.6.77)

Then, the coefficients @, (m fixed) in (1.6.76) are found by multiplying it by
sin (22¥) and integrating with respect to y from 0 to b, so that

ab b . /nmy
(?) B = /o g (y)sin (T) dy, (1.6.78)

whence

Qppn, = (%) /Oa ];f (z,y)sin (m;m:) sin (m;‘y) drdy. (1.6.79)

Thus, the solution of the problem is given by (1.6.74) where amx is represented
by (1.6.79). The method of construction of the solution shows that the initial and

boundary conditions are satisfied by the solution. Moreover, the uniform conver- .

gence of the double series justifies differentiation of the series, and this, in turn,
permits us to verify the solution by direct substitution in the original diffusion
equation (1.6.54).

Example 1.6.4 (Dirichlet’s Problem for a Circle). We consider the Laplace equa-
tion in polar coordinates (r, 8, z) as

1

1
Upr + e + —ugs = 0, O<r<a, 0<0<2m, (1.6.80)

r2
with the boundary condition

u(a,8) = f(#) forall 6. (1.6.81)
According to the method of separation of variables, we seek a solution in the form

w(r,f) = R(r)©(8) £0. (1.6.82)

Substituting this solution in equation (1.6.80) gives
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RH RI @H
24t A _
r 7 +TR = =K

Hence,

PPR" 4 rR —AR=0 and ©&"+20=0. (1.6.83ab)
For © (#), we naturally require periodic boundary conditions

o0 +2m)=06(0) for —oo< 8 <o0. (1.6.84)

Due to the periodicity condition, for A < 0, the solution (1.6.82) leads to a trivial
solution. So, there are two cases: (i) A = 0 and (ii) A > 0.
For case (i), we have the solution

u(r,8) = (A + Blogr) (C8 + D). (1.6.85)

Since log r is singular at 7 = 0, hence, B = 0. For u to be periodic with period
97, C = 0. Hence, the solution » must be constant for A = 0.
For ) > 0, the solution of equation (1.6.83b) is

©(8) = Acos VX 6 + Bsin VA 0. (1.6.86)

Since @ (#) is periodic with period 27, /A must be an integer 7 so that A = n?,
n=1,2,3,.... Thus, solution (1.6.86) becomes

O (0) = Acosnf + Bsinnf. (1.6.87)

The equation (1.6.83a) is the Euler equation with A = n?. It gives solutions of the
form R (r) = r® # 0 so that (1.6.83a) gives

[a(a—l)—}—afnz]r“ =0
whence, & = 4+ n. Thus, the solution for B (r)is given by
R(r)=Cr"+Dr ™, (1.6.88)

Since R (r) — oo as r — 0 because of the term r~™, hence, D = 0. Thus, the
solution (1.6.82) reduces to

w(r,8) = Cr™ (Acosnf + Bsinnf). (1.6.89)

By the superposition principle, the solution of the Laplace equation within a cir-
cular region including the originr = 0 is

1 o0
u(r,0) = 500+ > "1™ (an cosnf + by sinnd), (1.6.90)

n=1

where ag, @y, and b, are constants to be determined from the boundary conditions,
and the first term $ap represents the constant solution for A=0(n=0).
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Finally, using the boundary condition (1.6.81), we derive

F(0) =u(a,b) = %ao + Z a” (an cosnf + b, sinnd). (1.6.91)

n=1

This is exactly the Fourier series representation for f (¢), and hence, the coeffi-
cients are given by

ap = —— f(qb)coanﬁd¢>, n=0,1,2,3,..., -

Tam™

2
f f(¢)sinng do, n=123,....

Wa”

Substituting the values for a,, and b,, in (1.6.91) yields the solution

1 27
w(r0) =52 [ F(0)ds

0 - 2w
+% Z (2) /(; (cosnf cosng + sinnd sinng) f (¢) dp

= f f ¢){1+QZ( )" cosn (0 )}dgﬁ, (1.6.92)

n=1

where the term inside the set of braces in the above integral can be summed by
writing it as a geometric series, that is,

143 (5) e fin@- e+ (5) e {-in(6 - )}
n=1 n=1
r exp{i(6 — )} r exp{—i(0—9)}
a—r exp{i(§—¢)} a—rexp{—i(d—9)}

(a2~ 1?)

a? — 2ar cos (0 — ¢) + 12’

=1+

Thus, the final form of the solution is

1 (@-r’)f(@)ds
27r/ — 2ar cos(f — @) + 12

u(r,8) = (1.6.93)
This formula is known as Poisson’s integral formula representing the solution of
the Laplace equation within the circle of radius a in terms of values prescribed on
the circle. It has several important consequences. First, we set 7 = 0 and # = 0 in
(1.6.93) to obtain

2
u(0,0) = 51;/0 f () do. (1.6.94)
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This states that the value of u at the center is equal to the mean value of u on the
boundary of the circle. This is called the mean value property.
‘We rewrite (1.6.93) in the form

2m
u('r',B):/O P(r,0—¢) f(¢)d, (1.6.95)

where P (r, 8 — ¢) is called the Poisson kernel given by

I (a2 —1?)

FErh = = 27 a2 — 2ar cos (8 — ¢} + 12’ (080
which is zero for 7 = a but 8 #£ ¢. Further,
27
1O = Jim ot0)= [ | 1m o) £ @),
r—a— 0 T—a—
which implies that
lim P(r,0—¢)=35(0—d), (1.6.97)

T—a—

where ¢ () is the Dirac delta function.

1.7 Fourier Transforms and Initial Boundary-Value Problems

The Fourier transform of u (x, t) with respect to z € Ris denoted by F {u (z,t)} =
U (k,t) and is defined by the integral

F e, ) = U (1) = \/%[‘ ey (2, ) de,  (LT.D)

where k is real and is called the transform variable. The inverse Fourier transform,
denoted by F~* {U (k,t)} = u(z,1), is defined by

F Uk, 1)} = u(z,t) = e*= U (k,t) dk. (1.7.2)

mf

Example 1.7.1

(a) J"-_{exp (—G.Iz)} =

12
——exp (_E) , a>0, (1.7.3)

(b) f{exp(—a[x[)}ﬂ/gﬁ, a>0.  (1.7.4)

Ifu(x,t) — 0,as |z| — oo, then



