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Fiéme 2.1) § = 0 when ¢ = 0, then at a later time ¢

8 = wt.

y = Asinf = Asinwt.

o back and forth motion of Q is called simple harmonic motion. By definition, an
bject is executing simple harmonic motion if its displacement from e'quilib‘rium can
_be written as Asinwt [or A coswt or Asin{wi+g), but these two functions ('hffer from
Asinwt only in choice of origin; such functions are called sinusoidal functions]. You
cah think of many physical examples of this sort of simple vibration: a pendulum,
4 tuning fork, a weight bobbing up and down at the end of a spring.

. The z and y coordinates of particle P in Figure 2.1 are
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(23 T = Acoswt, y = Asinwt.
% 1. INTRODUCTION ,

Problems involving vibrations or oscillations occur frequently in physics and engi-
neering. You can think of examples you have already met: a vibrating tuning fork, . .
a pendulum, a weight attached to a spring, water waves, sound waves, alternating (2.4) z =1 + iy = A{coswt +isin wt)
electric currents, etc. In addition, there are many more examples which you will - = Ae™t.
meet as you continue to study physics. Some of them—for example, heat conduc-
tion, electric and magnetic fields, light—do not appear in elementary work to have
anything oscillatory about them, but will turn out in your more advanced work to
involve the sines and cosines which are used in describing simple harmonic motion
and wave motion.
In Chapter 1 we discussed the use of power series to approximate complicated
functions. In many problems, series called Fourier series, whose terms are sines and
cosines, are more useful than power series. In this chapter we shall see how to find
and use Fourier series. Then, in Chapter 13 (Sections 2 to 4}, we shall consider
several of the physics problems which Fourier was trying to solve when he invented
Fourier series.

£ we think of P as the point z = z +4y in the complex plane, we could replace (2.3)
by a single equation to describe the motion of P:

Tt is often worth while to use this complex notation even to describe the m9t1011
of (; we then understand that the actual position of Q is equal to the imaginary
 part of z (or with different starting conditions the real part of z). For example, the
velocity of @ is the imaginary part of

dz d

5= EE(AEim) = Ajwe®? = Aiw(coswt + isinwt).

[The imaginary part of (2.5) is Aw coswt, which is dy/dt from (2.2).]

(25)

i 2x
tinterval = =5

Since sines and cosines are periodic functions, Fourier series can represent only
periodic functions. We will see in Section 12 how to represent a non-periodic func-
tion by a Fourler integral (Fourier transform).
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Figure 2.2

& 2. SIMPLE HARMONIC MOTION AND WAVE MOTION;
PERIODIC FUNCTIONS

We shall need much of the notation and terminology
used in discussing simple harmonic motion and wave
motion. Let's discuss these two topics briefly.

Let particle P (Figure 2.1) move at constant
speed around a circle of radius A. At the same
time, let particle (2 move up and down along the
straight line segment RS in such a way that the
y coordinates of P and () are always equal. If w is
the angular velocity of P in radians per second, and Figure 2.1

3
ey

It is useful to draw a graph of z and y in (2.2) and (2.3) as a function of t.
Figure 2.2 represents any of the functions sinwt, coswt, sin(wt + ¢} if we choose
the origin correctly. The number A is called the amplitude of the vibration or the
amplitude of the function. Physically it is the maximum displacement of Q ‘from
its equilibrium position. The period of the simple harmonic motion or the? period of
the function is the time for one complete oscillation, that is, 27 /w (See Figure 2.2).
We could ‘write the velocity of @ from (2.5) as

(2.6) %% = Aw coswt = Bcoswt.

340
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Here B is the maximum value of the velocity and is called the velocity amplitude.
Note that the velocity has the same period as the displacement. If the mass of the
particle @ is m, its kinetic energy is:

1 (dy\? 1
(2.7) Kinetic energy = Zm (a%) §mB2 cos® wt.
We are considering an idealized harmonic oscillator which does not lose energy.
Then the total energy (kinetic plus potential) must be equal to the largest value of

the kinetic energy, that is, %mBQ. Thus we have:

(2.8) Total energy = %mBZ.
Notice that the energy is proportional to the square of the (velocity) amplitude; we
shall be interested in this result later when we discuss sound.

Waves are another important example of an oscillatory phenomenon. The math-
ematical ideas of wave motion are useful in many fields; for example, we talk about
water waves, sound waves, and radio waves.

» Example 1. Consider water waves in which the shape of the water surface is (unrealis-
ticallyl) a sine curve. If we take a photograph (at the instant ¢ = 0) of the water
surface, the equation of this picture could be written (relative to appropriate axes)

2nx

y = Asin
where z represents horizontal distance and A is the distance between wave crests.
Usually A is called the wavelength, but mathematically it is the same as the period
of this function of z. Now suppose we take another photograph when the waves have
moved forward a distance vt (v is the velocity of the waves and ¢ is the time between
photographs). Figure 2.3 shows the two photographs superimposed. Observe that
the value of y at the point z on the graph labeled ¢, is just the same as the value of y
at the point (2 —vt) on the graph labeled ¢ = 0. If (2.9) is the equation representing
the waves at ¢ = 0, then
Y t=0 ¢t
P

NSNS

Figure 2.3

2
I (z — vt)

(2.10) y = Asin
1'e§1‘esents the waves at time t. We can interpret (2.10) in another way. Suppose
you stand at one point in the water [fixed z in (2.10)] and observe the up and down
motion of the water, that is, y in (2.10) as a function of ¢ (for fixed z). Thisis a
simple harmonic motion of amplitude A and period A/v. You are doing something
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Section2

alogous to this when you stand still and listen to a sound (sound waves pass your
ear and you observe their frequency) or when you listen to the radio (radio waves
pass the receiver and it reacts to their frequency).

We see that y in (2.10) is a periodic function either of & (¢ fixed) or of ¢ (z fixed);
both interpretations are useful. It makes no difference in the basic mathematics,
owever, what letter we use for the independent variable. To simplify our notation
we shall ordinarily use z-as the variable, but if the physical problem calls for it, you

COMMMM. AAAN
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Figure 2.4
Sines and cosines are periodic furictions; once you have drawn sinz from z = 0
 tox = 2, the rest of the graph from z = —00 to & = 400 is just a repetition over
_ and over of the 0 to 27 graph. The number 2 is the period of sinz. A periodic
function need not be-a simple sine or cosine, but may be any sort of complicated
graph that repeats itself (Figure 2.4). The interval of repetition is the period.

ple 2. If we are describing the vibration of a seconds pendulum, the period is 2 sec
(time for one complete back-and-forth oscillation). The reciprocal of the period is
the frequency, the number of oscillations per second; for the seconds pendulum, the
frequency is % sec™*. When radio announcers say, “operating on a frequency of 780
kilohertz,” they mean that 780,000 radio waves reach you per second, or that the
period of one wave is (1/780,000) sec.

By definition, the function f(z) is periodic if f(z + p) = f{z) for every z; the
number p is the period. The period of sinz is 2n since sin(z + 27) = sin z; similarly,
the period of sin 2z is 1 since sin 27(x + 1) = sin(2nz + 21) = sin 27z, and the
period of sin(rz/l) is 2 since sin(n/l)(z + 21) = sin(rz/I). In general, the period
of sin 27z /T is T.

ROBLEMS, SECTION 2

In Problems 1 to 6 find the amplitude, period, frequency, and velocity amplitude for the
motion of a particle whose distance s from the origin is the given function.

1.. 8= 3cosbt 2. s=2sin(4t—1)

8. 5= Lcos(nt —8) 4. s=>5sin(t—m)

5. s==2sin3t cos 3t 6. s =3sin(2t + 7/8) + 3sin(2t — n/8)

In'Problems 7 to 10 you are given a complex function z = f(t). In each case, show that
4 particle whose coordinate is (a) z = Rez, (b) y = Im z is undergoing simple harmonic
motion, and find the amplitude, period, frequency, and velocity amplitude of the motion.

7. z=5e" 8. z=2e /2 9. z=2"" 10,  z = —get@+im
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11. The charge g on a capacitor in a simple a-c circuit varies with time according to the
equation g = 3sin(120nt + 7/4). Find the amplitude, period, and frequency of this
oscillation. By definition, the current flowing in the circuit at time ¢ is I = dg/dt.
Show that I is also a sinusoidal function of ¢, and find its amplitude, period, and
frequency.

12. Repeat Problem 11: (a) if ¢ = Re4e30™%; (b) if ¢ = Im 4€®%"*,

13. A simple pendulum consists of a point mass m suspended by a
(weightless) cord or rod of length I, as shown, and swinging in
a vertical plane under the action of gravity. Show that for small
oscillations (small §), both 6 and z are sinuscidal functions of time,
that is, the motion is simple harmonic. Hint: Write the differential
equation F = ma for the particle m. Use the approximation
sind = ¢ for small 6, and show that § = Asinwt is a solution of
your equation. What are 4 and w?

14. The displacements « of two simple pendulums (see Problem 13) are 4sin(#t/3) and
3sin(7t/4). They, start together at ¢ = 0. How long will it be before they are
together again at z = 07 Hint: Sketch or computer plot the graphs.

15.. Asin Problem 14, the displacements z of two simple pendulums are z = —2 cos(t/2)
and 3sin(t/3). They are not together at ¢t = 0; plot graphs to see when they are
first together. /

16. As in Problem 14, let the displacements be y = 3sin(t/v/2) and y» = sint. The
pendulums start together at ¢ = 0. Make computer plots to estimate when they will

be together again and then, by computer, solve the equation y; = yo for the root
near your estimate.

17. Show that equation (2.10) for a wave can be written in all these forms:

A

= Asinw (% —t) = Asin (22:\_97 ~27rft> :Asin%zr- (S— —t).

. 2m T t
PTIE 2 -____/t e H — - —
y = Asin —(z v)_Asm‘Zn'(/\ )

Here A is the wavelength, f is the frequency, v is the wave velocity, T is the period,
and w = 2 f is called the angulur frequency. Hint: Show that v = Af.

In Problems 18 to 20, find the amplitude, period, frequency, wave velocity, and wavelength
of the given wave. By computer, plot on the same axes, y as a function of £ for the given
values of ¢, and label each graph with its value of ¢. Similarly, plot on the same axes, y as
a function of ¢ for the given values of z, and label each curve with its value of z.

18. y=2sindn(z~3t); ¢t=0,3% %32 =z=0,1,23

h E By 4
19. y=cos2n(z—1t); ¢=0,1,2,3 =z=031 32
20. y=3sinw(z—-3t); t=0,1,23 =2=031,4%2

21. Write the equation for a sinusoidal wave of wavelength 4, amplitude 20, and veloc-
ity 6. (See Problem 17.) Make computer plots of y as a function of ¢ for z = 0, 1,
2, 3, and of y as a function of ¢ for t = 0, -é—, é, % If this wave represents the shape
of a long rope which is being shaken back and forth at one end, find the velocity
Oy /8t of particles of the rope as a function of.z and t. (Note that this velocity has
nothing to do with the wave velocity v, which is the rate at which crests of the wave

move forward.)

APPHLAUUHD VLT UMHITE UBHiGY « wrx

Do Problem 21 for a wave of amplitude 4, period 6, and wavelength 3. Make
computer plots of y as a function of z when t =0, 1, 2, 3, and of y as a function of
twhenz=3,1, % 2

Write an-equation for a sinusoidal sound wave of amplitude 1 and frequency 440 hertz
(1 hertz means 1 cycle per second). {Take the velocity of sound to be 350 m/sec.)

The velocity of sound in sea water is about 1530 m/sec. Write an equation for a
sinusoidal sound wave in the ocean, of amplitude 1 and frequency 1000 hertz.

95.  Write an equation for a sinusoidal radio wave of amplitude 10 and frequesncy 600
' kilohertz. Hint: The velocity of a radio wave is the velocity of light, ¢ = 3-10° m/sec.

APPLICATIONS OF FOURIER SERIES

We have said that the vibration of a tuning fork is an example of simple harmonic
motion. When we hear the musical note produced, we say that a sound wave has
passed through the air from the tuning fork to our ears. As thc.e tuning f'ork vibrates
it pushes against the air molecules, creating alternately regions of high and low

AIARNRR IR RRAL iy

High
pressure pressure

Figure 3.1

pressure (Figure 3.1). If we measure the pressure as a function of z and ¢ from the
tuning fork to us, we find that the pressure is of the form of (2.10); if we measure
the pressure where we are.as a function of ¢ as the wave passes, we find that t‘he
pressure is a periodic function of t. The sound wave is a pure sine wave of a definite
frequency (in the language of music, a pure tone). Now suppose that several pure
tones are heard simultaneously. In the resultant sound wave, the pressure will not
be a single sine function but.a sum of several sine functions. If you strike a piano
key you do not get a sound wave of just one frequency. Instead, you get a fundamen-
tal accompanied by a number of overtones (harmonics) of frequencies 2, 3, 4, ---,
times the frequency of the fundamental. Higher frequencies mean shorter periods. If
sinwt and coswt correspond to the fundamental frequency, then sin nwt and cos nwt
correspond to the higher harmonics. The combination of the fundamental and the
harmonics is a complicated periodic function with the period of the fundamental
(Problem 5). Given the complicated function, we could ask how to v{rite it as a
sum of terms corresponding to the various harmonics. In general it might require
all the harmonics, that is, an infinite series of terms. This is called a Fourier sellries.
Expanding a function in a Fourier series then amounts to breaking i? down n.no
its various harmonics. In fact, this process is sometimes called harmonic analysis.
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There are applications to other fields besides sound. Radio waves, visible light,
and x rays are all examples of a kind of wave motion in which the “waves” correspond
to varying electric and magnetic fields. Exactly the same mathematical equations
apply as for water waves and sound waves. We could then ask what light frequencies
(these correspond to the color) are in a given light beam and in what proportions.
To find the answer, we would expand the given function describing the wave in a
Fourier series.

You have probably seen a sine curve used to represent an alternating current
(a-c) or voltage in electricity. This is a periodic function, but so are the functions
shown in Figure 3.2, Any of these and many others might represent signals (volt-
ages or currents) which are to be applied to an electric circuit. Then we could ask

i t i | 1
i ! i i i
(a) Square wave

(b) Sawtooth
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{c) Rectified half-wave
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i

Figure 3.2

what a-c frequencies (harmonics) make up a given signal and in what proportions.
When an electric signal is passed through a network (say a radio), some of the
harmonics may be lost. If most of the important ones get through with their
relative intensities preserved, we say that the radio possesses “high fidelity.” To
find out which harmonics are the important ones in a given signal, we expand it in
 Fourier series. The terms of the series with large coefficients then represent the
impaortant harmonics (frequencies).

Since sines and cosines are themselves periodic, it seems rather natural to use
series of them, rather than power series, to represent periodic functions. There is
another important reason. The coefficients of a power series are obtained, you will
recall (Chapter 1, Section 12), by finding successive derivatives of the function being
expanded; consequently, only continuous functions with derivatives of all orders can
be expanded in power series. Many periodic functions in practice are not continuous
or not differentiable (Figure 3.2). Fortunately, Fourier series (unlike power series)
can represent discontinuous functions or functions whose graphs have corners. On
the other hand, Fourier series do not usually converge as rapidly as power series
and much more care is needed in manipulating them. For example, a power series
can be differentiated term by term (Chapter 1, Section 11), but differentiating a
Fourier series term by term sometimes produces a series which doesn’t converge.
(See end of Section 9.)

Our problem then is to expand a given periodic function in a series of sines and
cosines. We shall take this up in Section b after doing some preliminary work.

Section 4 fammge - mms

PROBLEMS, SECTION 3

For each of the following combinations of a fundamental musical tone and some of its
overtones, make a computer plot of individual harmonics (all on the same axes) and then
a plot of the sum. Note that the sum has the period of the fundamental (Problem 5).

1. sint— 3sindt 2. 2cost+cos2t
3. sinwt -+ sin 27t + % sin 37t 4. cos2mt + cosdmt + % cos 6t

5. Using the definition (end of Section 2) of a periodic function, show that a sum of
terms corresponding to a fundamental musical tone and its overtones has the period
of the fundamental.

In Problems 6 and 7, use a trigonometry formula to write the two terms as a single
harmonic. Find the period and amplitude. Compare computer plots of your result and

the given problem.
6. sin2z -+ sin2(z +7/3) 7. coswr — cos(z —1/2)
8. A periodic modulated (AM) radio signal has the form
. z
y = (A + Bsin2n ft) sin 27 fe (t - ;) .

The factor sin 27 fo(t — £/v) i8 called the carrier wave; it has a very high freqx{ency
(called radio frequency; fo is of the order of 108 cycles per second)- The amplitude
of the carrier wave is (A + Bsin 27 ft). This amplitude varies with time—hence the
term “amplitude modulation” —with the much smaller frequency of the sound being
transmitted (called audio frequency; f is of the order of 10? cycles per second). In
order to see the general appearance of such a wave, use the following simple but
unrealistic data to sketch a graph of y as & function of £ for « = 0 over two periods
of the amplitude function: A=38B=1f=1 fo = 20. Using trigonometric
formulas, show that y can be written as a sum of three waves of frequencies fe,
fe+ f,and fo— f; the first of these is the carrier wave and the other two are called
side bands.

4. AVERAGE VALUE OF A FUNCTION

The concept of the average value of a function is often useful. You know how to find
the average of a set of numbers: you add them and divide by the number of numbers.

y =f(x)

Lo
/ X =a X2 X3 eee xu=b\

Figure 4.1
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This process suggests that we ought to get an approximation to the average value
of a function f(x) on the interval (a,b) by averaging a number of values of f(x)

(Figure 4.1):

Average of f(x) on (a,b) is approximately equal to

f($1)+f($2)+“‘+f($n)'

7

(4.1)

"This should become a better approximation as 7 increases. Let the points 1, T2, -
be Az apart. Multiply the numerator and the denominator of the approximate

average by Az. Then (4.1) becomes:

Average of f(z) on {(a,b) is approximately equal to

flay) +-+ [(za)]Az
n Az '

(42)

Now 1 Az = b~ a, the length of the interval over which we are averaging, no matter
what n and Az are. If we let n — oo and Az ~ 0, the numerator approaches

f: f() dz, and we have

In applications, it may happen that the average value of a given function is zero.

+ Examplel. The average of sinz over any number of periods is zero. The average value of
the velocity of a simple harmonic oscillator over any nuimnber of vibrations is zero.
In such cases the average of the square of the function may be of interest.

- Example 2. If the alternating electric current Howing through a wire is described by a
sine function, the square root of the average of the sine squared is known as the
root-mean-square or effective value of the current, and is what you would measure
with an a-c ammeter. In the example of the simple harmonic oscillator, the average
kinetic energy (average of %mvz) is %m times the average of v2.

sin? x cos? x

P3¢ o e s o e
®
—
%

°l
‘ Figure 4.2

Now you can, of course, find the average value of sin® ¢ over a period (say —7
to 7) by evaluating the integral in (4.3). There is an easier way. Look at the graphs
of cos? z and sin® z (Figure 4.2). You can probably convince yourself that the area

Section 4 AVETage vaiue 0r.d runsuun  aay

under them is the same for any quarter-period from 0 to /2, 7/2 to 7, etc. (Also
see Problems 2 and 13.) Then

g3 T
/ sin®zdz = / cos® z d.
— —%

Similarly (for integral n # 0),

P X
/ sin® nz de = / cos? nz dz.

—%

(4.4)

(4.5)
-
But since sin nz + cos® nz = 1,

T T
(sin? nz + cos? nz) dz =
—r -7

(4.6) dz = 2m.

Using (4.5), we get

X G2
(4.7) / sin® nz dz = / cos® nx dz = .

-7 —

Then using (4.3) we see that:

We can say all this more simply in-words. By (4.5), the average value of sin® nz
equals the average value of cos® nz. The average value of sin?nz+cos?nz = 11is 1.
Therefore the average value of sin® nz or of cos® nz is % (In each case the average
“value is taken over one or more periods.)

PROBLEMS, SECTION 4

1. Show that if f(z) has period p, the average value of f is the same over any interval
of length p. Hint: Write f:ﬂg f(z)dz as the sum of two integrals (a to p, and p to
a + p) and make the change of variable & = t -+ p in the second integral.

(a) Prove that fo"/2 sinfede = [T/

@ = m —t in one of the integrals.

cos? £ dz by making the change of variable

(b) Use the same method t6 prove that the averages of sin?(nzx /1) and cos® (nwz/l)
are the same over a period.

In Problems 3 to 12, find the average value of the function on the given interval. Use
equation (4.8) if it applies. If an average value is zero, you may be able to decide this from
a quick sketch which shows you that the areas above and below the z axis are the same.
1—e % on(0,1)

3. sing + 2sin 2z + 3sin3z on (0, 2m) 4.
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2 " !
5. cos 5 on (O, 2) 6. sinz on (0,7)
7. z—cos’ 6z on (() .’f) 8 sin2zon (= o
’ "6 : 6" 6
9. sin® 3z on (0,4r) 10. cosz on (0,37)
, 5 Tme 8
11. sinx + sin® 2 on (0,2n) 12, cos? % on (0, 7)

13. Using (4.3) and equations similar to (4.5) to (4.7), show that

b 6 1
/siu“ca:da::/ coslkmdm=§(b—a)

if k(b — a) is an integral multiple of 7, or if kb and ka are both integral
multiples of 7 /2.

Use the results of Problem 13 to evaluate the following integrals without calculation.

am/3 3z sw/2 o
14. o ain2 [ 9% e b / el {2 da
(a) /u sin ( 5 ) da / () e cos (2) i
"11/4 2
15. (a) / cos® wa du (b) / sin? (E) dz
—1/4 -1 3

om fw 2
16. (a) / sin® wi dt (b) / cos® 2t dt
o 0

# 5, FOURIER COEFFICIENTS

We want to expand a given periodic function in a series of sines and cosines. To
simplify our formulas at first, we start with functions of period 2r; that is, we shall
expand periodic functions of period 27 in terms of the functions sinnz and cosnz.
(Later we shall see how we can change the formulas to fit a different period—see
Section 8.) The functions sinz and cosz have period 27; so do sinnz and cosnz
for any integral n since sinn(z + 27) = sin(nz + 2nw) = sinnz. (It is true that
sinnz and cosna also have shorter periods, namely 27/n, but the fact that they
repeat every 27 is what we are interested in here, for this makes them reasonable
functions to use in an expansion of a function of period 2m.) Then, given a function
f(z) of period 27, we write

and derivé formulas for the coefficients a, and by, {The reason for writing %ao as
the constant term will be clear later—it makes the formulas for the coefficients
simpler to remember—but you must not forget the % in the series!)

In finding formulas for a, and b, in (5.1) we need the following integrals:
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We have already shown that the average values of sin® nz and cos® nz are % The
last integral in (5.2) is the average value of 1 which is 1. To show that the other
average values in (5.2) are zero (unless m = n # 0), we could use the trigonometry
formulas for products like sin§ cos ¢ and then integrate. An easier way is to use the
formulas for the sines and cosines in terms of complex exponentials. [See (7.1) or
Chapter 2, Section 11.] We shall show this method for one integral

T . v eima: — e—imz 6inau + e—inz
(5.3) sinmz cosnx dr = 5 . 5 dz.
—r -7

We can see the result without actually multiplying these out. All terms in the
product are of the form e**®, where k is an integer # 0 (except for the cross-
product terms when n = m, and these cancel). We can show that the integral of
each such term is zero:

u ” etk |7
R —_—
(5.4) /_7r e dz = T

because €™ = ¢~ = coskm (since sinkw = 0). The other integrals in (5.2) may
be evaluated similarly (Problem 12).
“"""We now show how to find @, and b, in (5.1). To find ag, we find the average
value on {—m,7) of each term of (5.1).

1 ag

" 1 £ 1 ki
— — 0 d = s dn
o Mﬂf(w)dm 3 o /-« $+a127r/_rcosz i

eikw . e«ilﬁr
ik

1T

(5:5) x -
1 1 .
—{—az——-/ cos2zdr -+ + by sinzde+ - - .
27 ) 2m f
By (5.2), all the integrals on the right-hand side of (5.5) are zero except the first,
because they are integrals of sinmz cos nz or of cosmz cosnz withn = 0 and m # 0
(that i, m # n). Then we have

1 4 . Gg 1 ™ L _ %
50 ) f@de=5 2w/_ﬂd“_ 2
1 g
(5.6) a():—/ flz)dx.
TS em
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Given f(z) to be expanded in a Fourier series, we can now evaluate ag by calculating
the integral in (5.6). )

To find ay, multiply both sides of (5.1) by cosz and again find the average value
of each term:

1" PRI IR S L L (" g
o _Wf(x) coswds = 5 5 _wcm::c $+a12ﬂ qcos zdz
1 <1
(5.7) +ag=—= cos2zcosrdr +---
2m J_,
ue
+ by — sinz coszdxr + - .

2w J

This time, by (5.2), all terms on the right are zero except the a; term and we have

1/Wf(a:) s dr = 1/7(002 d. -1
5] coszde = @15~ . s°ede = Sa1.
Solving for ay, we have
1 X
a1=-/ f(z)cosxzda.
’n. i

The method should be clear by now, so we shall next find a general formula for a.
Multiply both sides of (5.1) by cosnz and find the average value of each term:

1 p T 7 "

o - f(z)cosnzdx = %9—2; - cosnzrdr + al—z—ly; . cosx cosnz dr
1 X3
(5.8) + a2 / cos2z cosnzdr + -

l X3
+by— | sinzcosnzdr+---.
2n J .

By (5.2), all terms on the right are zero except the a,, term and we have

I I 1
5 fx)cosnzde = ng= . cos®* nzdr = -2.%_

-7

Solving for a,,, we have

Notice that this includes the n = 0 formula, but only because we called the constant
term %ao.

To obtain a formula for b,,, we multiply both-sides of (5.1) by sinnz and take
average values just as we did in deriving (5:9). We find (Problem 13)

The formulas (5.9) and (5.10) will be used repeatedly in problems and should be
mernorized.

Exam|
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ple 1. Expand in a Fourier series the function f(z) sketched in Figure 5.1. This
function might represent, for example, a periodic voltage pulse. The terms of our
Fourier series would then correspond to the different a-c frequencies which are com-
bined in this “square wave” voltage, and the magnitude of the Fourier coefficients
would indicate the relative importance of the various frequencies.

fi)
1

1
|
|
1
I
T

S——
o foem e

Figure 5.1

Note that f(z) is a function of period 2w. Often in problems you will be given
f(z) for only one period; you'should always sketch several periods so that you see
clearly the periodic function you are expanding. For example, in this problem,
instead of a sketch, you might have been given

0, —m<z<0
5.11 ) =4 !
( ) @) 1, O<z<m
Tt is then understood that f(z) is to be continued periodically with period 27 outside
the interval (—m, 7).

We use equations (5.9) and (5.10) to find a, and b,:

1 " 0 T
an=;/ f(z) cosnwdw=%[/ 0-008m:d:n+/ 1~cosm:da:}
. 0

-
7

=0 forn#0,
0

R E for n = 0.

1.
- SinNT
n

1 7f
= - cosnz dr =
T Jo

Thus ag = 1, and all other ¢, = 0.

Ay

1 " 1 0 v
bnz—/ fx) sinnwdw:—[/ O-Sinnmder/ llsinn:cdav}
TS i o

-

1 /" 1 [ —cos «
= -/ sinnzrdr = — !:_C_Obﬂ} = ___1_[(_1)n —1]
T Jo w n o nw

0 forevenn,

2— for odd n.
nmw

Putting these values for the coefficients into (5.1), we have

1 2 /sinz sin3z  sinbz
(5.12) f(m)«§+-7;<-—1-+ : +T+"'>'
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» Example2. We can now find the Fourier series for some other functions without more

evaluation of coefficients. For example, consider

= —1, —w<z<0,
(5.13) 9(@) = 1, O<z<m.

Sketch this and verify that g(z) = 2f(z)—1, where f(z) is the function in Example 1.
Then from (5.12), the Fourier series for g(z) is

i in3 in bz
4 (smx sindz  sir +>

(5.14) g@) =\ *+73 5

Similarly, verify that h(z) = f(x + 7/2) is Fig. 5.1 shifted /2 to the left (sketch
it), and its Fourier series is (replace z in (5.12) by z +7/2)
12 (cos:v cos 3z + cos 5z +>

h(a:)-:—é%—;

1 3 5

since sin(z + 7/2) = cosz, sin(z + 37/2) = — cos 3z, etc.

# PROBLEMS, SECTION 5

In each of the following problems you are given a function on the interval —n <z < 7.
Sketch several periods of the corresponding periodic function of period 27. Expand the
periodic function in a sine-cosine Fourier series.

1, —m<z<0,
1. T) =
f@) {0, O<e <.
In this case the sketch is: ¥
fr— 1
. I T T I

1 2 [sinz  sin3z . sindz
Your answer for the series is: f(z) = 57 §I—i— + 3 + :

Can you use the ideas of Example 2 to find this result without computation?

0, —-m<z<0,

T

2. flz)=4L (3r<w< 5
0, — L x LW

1 1 3 3. 08 5T
Answer: f(m):z.{._(m_(?os x+ﬁ_)

T 1 3 5
1 [(sinz 2sin2z | sin3z  sindz
}(T+_"z‘—+ 5 "7 )
0, —7c<a:<%,
3. =
@ 1, zr—<m<7r.
7 2
1 - 1/cosz - ‘dos3x ' cosbx

Answer: f(a:)—z~—7;< -3t )
1 {sinz _ 2sin2z + sin 3z + sinbx 25in6:c“.>
m A\ 1 2 3 5 6 ’

Section 8 Dirichlet Conditions « 355

ks
-1, -t <z < 5,
4 f@)= 1 ZT—<:z:<3r
» 3 .

Could you use Problem 3 to solve Problem 4 without computation?

0, —~mw<Lz<h,

T
5. fl@)={-1 0<sz<3,
1, g<w<7r.

1, —-7r<a:<»%, and O<:v<z;

6. f(z)= ks T 2

0, -§<a:<0, and ~2-<:c<7r‘

0, —w<a<l
7. F
f@) {z, O<z <.

Answer: f(z) = % _ ,72; (cosz—}— cos3x  cosbz + )

32 52
sin 2z n sin 3z __)

+ (smw—— 5 3

8. fly=14z, -m<z<m7,

1
Answer: f(z)= 1+2<Sinﬂr— §Sin2$+%six13x—— -lesimlw—i--u)
-, - <z <0,
, O<x <.

9. fla)= {

T 4 1 1
A D fle) =L - = bt —
nswer: f(x) 5 7T((:()sm+gcosi’>.'zt~§—25(:()55’)9:-%~ )
Ttz —T<z<0,
-, 0<z <.

10. flz)= {

1. fl@)= .0, -1 <z <0,
sinx, O<z <.

2 {cos2z  cosdz | cosbzx
2 + e
x

1.1
Answe'r:f(:r):;«i»—sm:t;-—— 22~1+42_1 &1

12. Show that in (5.2) the average values of sinmzsinnz and of cosmzcosnz, m # n,
are zero {over a period), by using the complex exponential forms for the sines and
cosines as in (5.3).

13. Write out the details of the derivation of equation (5.10).

6. DIRICHLET CONDITIONS

Now we have a series, but there are still some questions that we ought to get
answered. Does it converge, and if so, does it converge to the values of f(z)? You
will find, if you try, that for most values of z the series in (5.12) does not respond
to any of the tests for convergence that we discussed in Chapter 1. What is the
sum of the series at = 0 where f(z) jumps from 0 to 17 You can see from the
series (5.12) that the sum at z = 0 is §, but what does this have to do with f(z)?
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These questions would not be easy for us to answer for ourselves, but they are
answered for us for most practical purposes by the theorem of Dirichlet:

e L R

" To see what all this means, we shall consider some special functions. We have
already discussed what a periodic function means. A function f(=) is single-valued
if there is just one value of f(z) for each z. For example, if 22 4y = 1., y
is not a single-valued function of =, unless we select just y = +v1— xz. or just
y = —v/1— z2. An example of a function with an infinite number of maxima atnd
minima is sin(1/xz), which oscillates infinitely many times as # — 0. If we imagine
a function constructed from sin(1/z) by making f(z) = 1 for every x for which
sin(1/z) > 0, and f(z) = —1 for every = for which sin(1/x) < 0, this function
would have an infinite number of discontinuities. Now most functions in applied
work do not behave like these, but will satisfy the Dirichlet conditions.

Finally, if y = 1/z, we find
1

11
/ T =w’
| 0

so the function 1/z is ruled out by the Dirichlet conditions. On the other hand, if

f(z) =1/+/1al, then
kis 1 - WQ‘: =
/—7r ———\/I_I_lda:-Z 7 4z

so the periodic function which is 1/+/]z] between —7 and 7 can be expanded in a
Fourier series. In most problems it is not necessary to find the value of ffﬂ |f ()] dz;
let us see why. If f(z) is bounded (that is, all its values lie between M for some
positive constant M), then

/:;lf(:c)\dmg/:;dezMQw

] \/\/
|/
i i
i
i
i
i
i
§

1
da::Z/ ~dr=2Inz
o T

ks
= 47,
0

|

>

F] =

n

Figure 6.1
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and so is finite. Thus you can simply verify that the function you are considering is
bounded-(if it is) instead of evaluating the integral: Figure 6.1 is an (exaggerated!)
example of a function which satisfies the Dirichlet conditions on (~=, 7).

We see, then, that rather than testing Fourier series for convergence as we did
power series, we instead check the given function; if it satisfies the Dirichlet con-
ditions we are then sure that the: Fourier series, when we get it, will converge to
the function at points of continuity and to the midpoint of a jump. For exam-
ple, consider the function f(z) in Figure 5.1. Between —= and « the given f(z)
is single-valued (one value for each z), bounded (between +1 and 0), has a finite
number of maximum and minimum values (one of each), and a finite number of
discontinuities (at —, 0, and #), and therefore satisfies the Dirichlet conditions.
Dirichlet’s theorem then assures us that the series (5.12) actually converges to the
function f(z) in Figure 5.1 at all points except z.= nr where it converges to 1/2.

In Chapter 3, Sections 10 and 14, we defined a basis for ordinary 3-dimensional
space as a set of linearly independent vectors (like i, j, k) in terms of which we could
write every vector in the space. We then extended this idea to an.n-dimensional
space and to a space in which the basis vectors were functions. By analogy, we say
here that the functions sinnz, cos na are a-set of basis functions for the (infinite di-
mensional) space of all functions (satisfying Dirichlet conditions) defined on (~m, )
or any 27 interval. (Also see “completeness relation” in Section 11. And for more
examples of such sets of basis functions, see Chapters 12 and 13.)

Number ‘of terms

Figure 6.2

It is interesting to see a graph of the sum of a large number of terms of a Fourier
series. Figure 6.2 shows several different partial sums of the series in (5.12) for the
function in Figure 5.1. We can see that the sum of many terms of the series closely
approximates the function away from the jumps and goes through the midpoint
of the jump. The “overshoot” on either side of a jump bears comiment. It does
not disappear as we add more and more terms of the series. It simply becomes a
narrower and narrower spike of height equal to about 9% of the jump. This fact is
called the Gibbs 'phenomenon.
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We ought to say here that the converse of Dirichlet’s theorem is not true—if
a function fails to satisfy the Dirichlet conditions, it still may be expandable in a
Fourier series. The periodic function which is sin(1/z) on (—, ) is an example of
such a function. However, such functions are rarely met with in practice.

« Example. Fourier series can be useful in sumuming numerical series. Look at Problem 5.2

(sketch it). From Dirichlet’s theorem, we see that the Fourler series converges to
1/2 at z = 0. Let = = 0 in the Fourier series to get

1 1 1 11 1
B T S B e it SC
g

2 4 3 5 7
since sin0 = 0 and cos0 = 1. Thus
PSS O S
3 5 7 Ty

» PROBLEMS, SECTION 6

1 to 11. For each of the periodic functions in Problems 5.1 to 5.11, use Dirichlet’s theorem

to find the value to which the Fourier series converges at « = 0, /2, %w, +2x.

12. Use a computer to produce graphs like Fig. 6.2 showing Fourier series approximations
to the functions in Problems 5.1 to 5.3, and 5.7 to 5.11. You might like to set
up a computer animation showing the Gibbs phenomenon as the number of terms
increases.

13. Repeat the example using the same Fourier series but at © = /2.

14. Use Problem 5.7 to show that 44, 1/n* = n*/8. Try z = 0, and z = 7. What
do you find at z = /27
1 1 1

15. Use Problem 5.11 to show that Crp + Bl + R

.
L

# 7. COMPLEX FORM OF FOURIER SERIES

Recall that real sines and cosines can be expressed in terms of complex exponentials
by the formulas [Chapter 2, (11.3)]
einw - e—in:c eina: + e—inw

7.1 SINL = e STUL =2 e
(7.1) 5 cosn 2
If we substitute equations (7.1) into a Fourier series like (5.12), we get a series of
terms of the forms e™® and e~*. This is the complex form of a Fourier series. We
can also find the complex form directly; this is often easier than finding the sine-
cosine form. We can then, if we like, work back the other way and [using Euler’s
formula, Chapter 2, (9.3)] get the sine-cosine form from the exponential form.

We want to see how to find the coefficients in the complex form directly. We

assume a series
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?Lnd try to find the c,’s. From (5.4) we know that the average value of ™% on (—m,m)
is zero when k is an integer not equal to zero. To find ¢y, we find the average values
of the terms in (7.2):

1 L w .
(7.3) o / F(&) dz = co - 1 dz+ {average values of terms of the
- o

27 form e*** with k an integer # 0
=cg+0,
(1.4 [
. w=g [ fa@d

To find ¢, we m}lltiply (7.2) by e™** and again find the average value of each
f,erm. N9te the minus sign in the exponent. In finding a,, the coefficient of cosnz
in equation (5.1), we multiplied by cosnz; but here in finding the coefficient Cn of

¢ we multiply by the complex conjugate ¢~
1/ : 1 /. 1 /7
(7.5) P f(:l,‘)e—m“" dx = g e~ g —ing iz
o ) 05 . +c;-—-271r “We e dx
1 & . .
+ 0_1_2_7; e~27t.’te—-’t$ dx _*. e

-

The terms on the right are the average values of exponentials €** where the k
values are integers. Therefore all these terms are zero except the one where k = 0;
this is the term containing c,,. We then have

1 ™

( ) —ing 1 N ine i I i
= f(z)e de = ¢, - = - T dr = ¢, » — g
7 . Cn 3 [ﬂ € € dx Cn 2 /,,,. dr = Cny

Note that this formula contains the one for g (no % to worry about here!). Also,

since (76) is valid for negative as well as positive n, you have only one formula to
memorize here! You can easily show that for real f(z), c_p, = &, (Problem 12).

Example. Let us expand the same f (z) we did before, namely (5.11). We have from (7.6)

cn=-1—/0 e"i"“°~0~dx+-1~ " gmina 1-d
2 v 27 o € Thoax

" 1 1
- ; (e—inﬂ‘ . 1) — J min? n Odd;
¢ —2min 0, mneven #0,

1 * 1
co—-é-;/o dz—g‘

1 e——inz

2r —in
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Then
o . )
X 1 1 el 631:0 651,:5
— ne _ I B e
(7.8) fz) gcne 2*;«( —tg >
1 e—-im e——3im e~5im
t & (ti‘**::»:"* 75 +)

It is interesting to verify that this is the same as the sine-cosine series we had before.
We could use Euler’s formula for each exponential, but it is easier to collect terms

like this:
92 ez’z _ e——z’m 1 eSim _ e—3im
tE ( w Y3 >

(7.9) flz) =

+

DO -t DD e

2 (. 1.,
smx+§sm3zc+-~~

w
which is the same as (5.12).

# PROBLEMS, SECTION 7

1 to 11. Expand the same functions as in Problems 5.1 to 5.11 in Fourier series of
complex exponentials € on the interval (~, 7} and verify in each case that the answer
is equivalent to the one found in Section 5.

12. Show that if a real f(z) is expanded in a complex exponential Fourier series
$°% . cne’™®, then cen = Tn, where Cn means the complex conjugate of cn.

13. If f(z) = dao+ X3 ancosne + L7 bnsinnz = > o cne™, use Euler’s formula
to find an and by in terms of ¢, and C—n, and to find ¢, and c.n in terms of an
and by,.

» 8. OTHER INTERVALS

The functions sinnz and cosnz and e have period 2. We have been considering
(—m,7) as the basic interval of length 2m. Given F{#) on (—x,m), we have first
sketched it for this interval, and then repeated our sketch for the intervals (7, 3n},
(3w, 57), (—3m, =), etc. There are (infinitely) many other intervals of length 2w,
any one of which could serve as the basic interval. If we are given f (z) on any
interval of length 27, we can sketch. f(z) for that- given basic interval and then
repeat it periodically with period 2n. We then want to expand the periodic function
so obtained; in a Fourier series. Recall that in evaluating the Fourier coefficients,
we used average values over a period. The formulas for the coefficients are then
unchanged (éxcept for the limits of integration) if we use other basic intervals of
length 2. In practice, the intervals (—w,7) and (0, 27) are the ones most frequently
used. For f(x) defined on (0,2r) and then repeated periodically, (5.9), (5.10), and
(7.6) would read

/

1 27 1 27
A = — flz) cosnz d, by, = ;/ f(z)sinnzdz,
(8.1) T Jo 0

2n

7 fla)e™ ™™ dz,

Cp =
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and (5.1) and (7.2) are unchanged.

f(x)

t ! |
-27 -7 lO 4 27 3r A7

Figure 8.1

Notice how important it is to sketch a graph to see clearly what function you
are talking about. For example, given f(z) = 2? on (~,7), the extended function
of period 27 is shown in Figure 8.1. But given f(z) = 2° on (0, 2%), the extended
periodic function is different (see Figure 8.2). On the other hand, given f(2) as in
our example (5.11); or given'f(z) =1 on (0, 7), f(z) = 0'on (7, 2}, you can easily
verify by sketching that the graphs of the extended functions are identical. In this
case you would get the same answer from either formulas (5.9), (5.10), and (7.6) or
formulas (8.1). k

f(=)

{ | i
-2 - 0 [ 2r 3r 4T

Figure 8.2

Phy@qs problems do not always come to us with intervals of length 2x. Fortu-
nately, it is easy now to change to other intervals. Consider intervals of length 21,
say (~I,1) or (0,21). The function sin(nwz/l) has period 2!, since

.onw
sin T(w +21) =sin (n';r_x + 2n7r) = sin %ﬁ

Similarly, cos(nrz /1) and e/t have period 2[. Equations (5.1) and (7.2) are now
replaced by
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We have already found the average values ouer period of all the functions we
need to use to find @n, b, and ¢, here. The period is now of length 21, say —~l to [,
so in finding average values of the terms we replace

1 [ 1 /‘

— by = .

o /_7r V3 ),
Recall that the average of the square of either the sine or the cosine over a period
is % and the average of ¢ /! Je=ire/la1is 1. Then the formulas (5.9); (5.10),

and (7:6) for the coefficients become

For the basic interval (0;2]) we need only change the integration limits to 0 to 2[.
The Dirichlet theorem just needs 7 replaced by [ in order to apply here.

0, O<z<l|,
1, i<zl

Expand f(z) in an exponential Fourier series of period 2{. [The function is given
by the same formulas as (5.11) but on a different interval ]

fox)
i [ 1 t i | 1 I
L 1 ) L i 1 - x
-2 - 0 i 2l 3¢ 4l 5l

Figure 8.3

First we sketch a graph of f(z) repeated with period 2! (Figure 8.3). By equa-
tions (8.3), we find

1 ! 1 i —inwafl d
w i g e i -
o Ql L 2 £ ¢

; 21
e _1_, e~1.n7rx/l — 1 (€—~2in1r i e—imr)
Tl —inmfl ;=27
(8:4) o . 0, even i 0,
s . (1 e em?r) = 1
=2inm e odd
i
1A i
cp = éi \ dz = 5
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Then,
(8.5) f(g;) . _;_ o i_};r_(eijrrx:/l _ e—ivm:/l + lé&iwm/l _ :_]?;.e—isz'wa:/l 4. )
~1 _%(- ™ L3 )
=53 x sm—-l— gsm 7 LR I
PROBLEMS, SECTION 8

1t0 9. 'In Problems 5.1 t0'5.9, define each function by the formulas given but on the
interval (~—I,1). [That'is, replace 7 by %l and £ /2 by +I/2.] Expand each function in
a sine-cosine Fourier series’and in a complex exponential Fourier series.

10.7-{(a)" - Sketch-several periods of the function f (i) of period 2r which is equal to z
on ~7 <z <. Expand: f(z).in a sine-cosine Fourier series:and in-a corplex
exponential Fourier series.

Answer: f(z)=2(sitz = Lsin2z + Lsin3z — Lsindz 4 1),

{b) - Sketch several periods of the function f(x) of period 2r which is equal to'z
on'0'< z < 2%. Expand: f(z)in a sine-cosine Fourier series and in-& complex
exponential Fourier series. Note that this is not the same function.or the same
series as (a):

Answer: flz) = 1= 22 El—x—lél—w—

1

In Problems 11 to.14, parts (a) and (b), you are given in each case one period of a function.
Sketch several ‘periods of the function-and expand it in a sine-cosine-Fourier series; and in
a complex exponential Fourier series.

() flay=2%0<z<2m.
(b) flz)=e", 0<a<2m
) fz)=2-z,0<z<4

(b) flr)=sinmrz, 0< o<1

110 (a) flz) =27 “n <x<m
12,0 () flz)y=¢€" =n'<z <m
13. (a) flx)=2~z, ~2< <2
14, (a) flz)=sinmz, -3 <z <};

15. . Sketch-{or computer plot) each of the following functions on-the interval (~1,1) and
expand.it in‘a complex exponential series and in a sine-cosine series.

(a) flz)=z, -1<z<l

oo O
Answer: f(z).= %Z(_l)n+1 Smmrz-
n
1

142z, ~1<z<0,
1— 2z, O<e<l.

(b) fl=@)= {

cosnr
n2:

8 o0
Answer: f(z) ='— Z
B odd n=1

T4z o= li<r <o,
f(w)={ :

T, <<l

sinnwz
nd

Answer: f(x) = :——é— i

odd n=1
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Each of the following functions is given over one period. Sketch several geriods of the
corresponding periodic function and expand it in an appropriate Fourier series.

2 = sinnwz
16. f(z)=2, O0<z<Z Answer: f(w):l——;El:-——n—-—.

0, -1<z<0 2
Y= ’ 18. z) =2z, 0<z <10
N HEO e
0, —3<z<0, _ z/2, 0<x<2,
19. f(m):{:v, o<a<} 20. f@)=9;  2<a<a

21. Write out the details of the derivation of the formulas (8.3).

# 9, EVEN AND 0DD FUNCTIONS
An even function is one like 22 or cosz (Figure 9.1) whose graph for negative T is
just a reflection in the y axis of its graph for positive z. In formulas, the value of
f(z) is the same for a given « and its negative; that is

flx)=x?

‘/x

f(x)=cos x

Figure 9.1

flx)=sinx

N A
VARV,

f(x)=x

N

Figure 9.2

An odd function is one like ¢ or sinz (Figure 9.2) for which the values of f(z)
and f(—z) are negatives of each other. By definition

Notice that even powers of z are even, and odd powers of x are odd; in fact, this
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is the reason for the names. You should verify (Problem 14) the following rules for
the product of two functions: An even function times an even function, or an odd
function times an odd function, gives an even function; an odd function times an
even function gives an odd function. Some functions are even, some are odd, and
some (for example, €*) are neither. However, any function can be written as the
sum of an even function and an odd function, like this:

. 1 1
f@) = 5lf @) + f=a)] + 51f (=) = f(=2)];
the first part is even and the second part is odd. For example,
e = %(e“‘ +e7%) + %(e” — e™ %) = coshz + sinh z;

coshz is even and sinh z is odd (look at the graphs).

Integrals of even functions or of odd functions, over symmetric intervals like
(—m, @) or (=1,1), can be simplified. Look at the graph of sinz and think about
ffﬂ sinz dz. The negative area from —m to 0 cancels the positive area from 0 to «,
so the integral is zero. This integral is still zero for any interval (={,1) which is
symmetric about the origin, as you can see from the graph. The same is true for
any odd f(z); the areas to the left and to the right cancel. Next look at the cosine
graph and the integral ff'nj2 cosz dz. You see that the area from —=x/2 to 0 is the
same as the area from 0 to w/2. We could then just as well find the integral from
0 to 7/2 and multiply it by 2. In general, if f(z) is éven, the integral-of f(z) from
—{ to l is twice the integral from 0 to [. Then we have

- Suppose now that we are given a function on the interval (0,1). If we want to
represent it by a Fourier series of period 2{, we must have f(x) defined on (~{,0)
t00. There are several things we could do. We could define it to be zero (or, indeed,
anything else) on {—!,0) and go ahead as we have done previously to find either an
exponential or a sine-cosine series of period 2/. However, it often happens in prac-
tice that we need (for physical reasons—see Chapter 13) to have an even function
(or, in a different problem, an odd function). We first sketch the given function on
(0,0) (heavy lines in Figures 9.3 and 9.4). Then we extend the function on (-, 0)
£0 be even or to be odd as required. To sketch more periods, just repeat the {(~I,1)
sketch. (If the graph is complicated, it is helpful to trace it with a finger of one

Even Odd

Figure 9.3
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hand while you use the other hand to copy exactly what you are tracing. Turn the
paper upside down to avoid crossing hands.)

Even Odd

Frep— -
|
- I{ 0 | i { | E
, | ] l
! i I { |

Figure 9.4

-

For even or odd functions, the coefficient formulas for ay, and b, simplify. First
suppose f(z) is odd. Since sines are odd and cosines are even, f(z) sin(nna/l) is
even and f(z) cos(rra/l) is odd. Then a,, is the integral, over a symmetric interval
(~L,1); of an odd function, namely f(z)cos(nmz/l); an is therefore zero. But by is
the integral of an even function over a symmetric interval and is therefore twice the
0 to [ integral. We: have:

We say that we have expanded f(z) in a sine series (a,'= 0 so there are no cosine
terms). Similarly, if f(z) is even, all the by’s are zero, and the a,,’s are integrals of
even functions. We have:

We say that f(z) is expanded in a cosine series. (Remember that the constant term
is ag/2.)

You have now learned to find several different kinds of Fourier series that rep-
resent a given function f(z) on, let us say, the interval (0,1). How do you know
which to use in a given problem? You have to decide this from the physical problem
when you are using Fourier series. There are two things to check: (1) the basic pe-
riod involved in the physical problem; the functions in your series should have this
period; and (2) the physical problem may require either an even function or an odd
function for its solution; in these cases you must find the appropriate series. Now
consider f(z) defined-on (0, 1). We could find for it a sine-cosine or an exponential
series of period 1 (that is, [ = 1):

oC 1
f(a:) - che2inwx where e = / f(m)e—%nmt dz.
¢
00

Example. Represent f(z) =
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(The choice between sine-cosine and exponential series is just one of convenience in
evaluating the coefficients—the series are really identical.) But we could also find
two other Fourier series representing the same f(z) on (0,1). These series would
have period 2 (that is, I = 1). One would be a cosine series

o0 1
flz) = Z Qy COSNTE, a, = 2/ f(z) cosnrz dz, b, =0,
0

n=0

and represent an even function; the other would be a sine series and represent an
odd function. In the problems, you may just be told to expand a function in a
cosine series, say. You must then see for yourself what the period is when you have
sketched an even function, and so choose the proper [ in cos(nmz/l) and in the
formula for a,.

o1
1, O<z< 55
0, {<a<i,
by (a) a Fourier sine series, (b) a Fourier cosine series, (c) a Fourier series (the last

ordinarily means a sine-cosine or exponential series whose period is the interval over
which the function is given; in this case the period is 1).

| ' | 1
] i | ! 2 | ! ; !
c } =1 { T 1 ; T 3
|
[I— [N L___sl
Figure 9.5

(a) Sketch the given function between 0 and 1. Extend it to the interval (—1,0)
mal.ung it ({dd. The period is now 2, that is, [ = 1. Continue the function with
period 2 (Figure 9.5). Since we now have an odd function, a, = 0 and

9 gt 1/2
by, = 1 / f(z) sinnrrde =2 / sinnrz dz
0 0

1/2
= — — COSNTL =~—2— (cosﬂ~1)
nw o % 2 ’
2 4 2
b= 2 by = = =
1 2= b3 30 by =0,

Thus we obtain the Fourier sine series for f(z):

. 2 /(. 2sin27z  sin37x  sinbrz  2sinbrz
)= — | SIMTL + N
He) =2 ( 7 T3 T Tt )
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| [ l
! ] | | J i ] i
-é ! -é =T -3 0 1 1 F1 3
Figure 9.6
(b) Sketch an even function of period 2 (Figure 9.6).
Herel=1, b, =0, and
1 1/2
ao=2/ f(ac)dac=2/ dz =1,
0 0
! 2 . 12 2 . nw
an=2/0 f(z)cosnmxdr = ;;smmrwo = —sin—-
Then the Fourier cosine series for flz)is
1 2 fcosmz cos3wT i cosbnz . )
f@ =3+ 3 5
1k ) T ! f ] '
A R T N T R R Lo
] I i | ] I ] ! ] i | L
=3 -2 -1 -3 0 3 1 2
Figure 9.7

(c) Sketch the given function on (0,1) and continue it with periqd 1 (Figm‘we 9.7).
Here 21 = 1, and we find ¢, as we did in the example of Sectlon- 8. Asin that
example, the exponential series here can then be put in sine-cosine form.

£
il

1 ) vz
/ flz)e™ ¥ dg = / e de
0 0

1
— gminT —(~1)" — odd,
- _1-(=1) = ¢ inw "

2%inm  2inT 0, mneven#0.

1/2 1
co = dz = —.
o= [ :

1 1 2% -2 }_ sﬂig;_l ~GTLE
f($)=‘2'+‘;;r'(e T _ o z?rx+3e 38 + )
in6rzx
=l+—2— sin27r$+M+"'>-
2w 3
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Alternatively we can find both a,, and b,, directly.

1 1/2
ag=2/ f(:v)dx=2/ dz = 1.
0 0

1/2
ap, = 2/ cos2nrz dx = 0.
0

/2 1 1
by, = 2/ sin2nnz d = —(1 — cosnm) = ~—[1 — (—1)"].
0 nw nw
2 2
b1=-—’ b2=0’ b3=_: b4=0)
T 3r
There is one other very useful point to notice about even and odd functions. If
you are given a function on (—[,1) to expand in a sine-cosine series (of period 2I)
and happen to notice that it is an even function, you should realize that the b,’s
are all going to be zero and you do not have to work them out. Also the a,’s can
be written as twice an integral from 0 to [ just as in (9.5). Similarly, if the given
function is odd, you can use (9.4). Recognizing this may save you a good deal of
algebra.

Differentiating Fourier Series Now that we have a supply of Fourier series for
reference, let’s discuss the question of differentiating a Fourier series term by term.
First consider a Fourier series in which a,, and b, are proportional to 1/n. Since
the derivative of £ sinnz is cosnz (and a similar result for the cosine terms), we see
that the differentiated series has no 1/n factors to make it converge. Now you might
suspect (correctly) that if you can't differentiate the Fourier series, then the function
f(z) which it represents can’t be differentiated either, at least not at all points.
Turn back to examples and problems for which the Fourier series have coefficients
proportional to 1/n and look at the graphs (or sketch them). Note in every case
that f(z) is discontinuous (that is, has jumps) at some points, and so can’t be
differentiated there. Next. consider Fourier series with a, and b, proportional to
1/n?. If we differentiate such a series once, there are still 1/n factors left but we can’t
differentiate it twice. In that case we would (correctly) expect the function to be
continuous with a discontinuous first derivative. (Look for examples.) Continuing,
if a, and b, are proportional to 1/n®, we can find two derivatives, but the second
derivative is discontinuous, and so on for Fourier coefficients proportional to higher
powers of 1/n. (See Problems 26 and 27.)

It is interesting to plot (by computer) a given function together with enough
terms of its Fourier series to give a reasonable fit. In Section 5 we did this for
discontinuous functions and it took many terms of the series. You will find (see
Problems 26 and 27) that the more continuous derivatives a function has, the fewer
terms of its Fourier series are required to approximate it. We can understand this:
The higher order terms oscillate more rapidly (compare sinz, sin 2z, sin10z), and
this rapid oscillation is what is needed to fit a curve which is changing rapidly
(for example, a jump). But if f(z) has several continuous derivatives, then it is
quite “smooth” and doesn’t require so much of the rapid oscillation of the higher
order terms. This is reflected in the dependence of the Fourier coefficients on a
power of 1/n.
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LEMS, SECTION 9

The functions in Problems 1 to 3 are neither even nor odd. Write each of them as the sum
of an even function and an odd function.

1. (a) €™ (b) ze®
2. () lnll—z| (b) (1 +z)(sinz + cosx)
3. (a) -zt +2’ -1 (b) 1+¢€°

4. Using what you know about even and odd functions, prove the first part of (5.2).

Each of the functions in Problems 5 to 12 is given over one period. For each function,
sketch several periods and decide whether it is even or odd. Then use (9.4) or (9.5) to
expand it in an appropriate Fourier series.

- -1, —w<z<0,
5. f@)= 1, O<z<7

S Rt —l <z <0,
6. fB=) 1 o<z<t

4f wz 1, 3wz 1 b7z
Answer: f(w):—‘;(szl-—+§sm-—r+gsm-—l~—+~- .

f1, —1<e<n,
. = 0, ~2<z<-1and 1<z<2

7 T
8. flz)==, -3 <x<-é—.
9. flz)=z, -i<z<i

! ! 5 1 4 +-—1—c0367rac—-~
Answer: f(m)zﬁ—;r; cos21rx—§§cos 7T+ .

™ ™
10.  f(z) = |z}, -3 <z < 3"
11. f(z)=coshz, —m <z L7
2sinh 11 1 1 1
Answer: f(z) = —-S—lj—lr——z (§ - §cosz+ gCOSZ:E - —16c053$+ —ﬁcosékc - .

z4+1, -1<z<0,
12. f(m)ﬁ{m—-l, O<z <l

13. Cive algebraic proofs of (9.3). Hint: Write fil = ffﬁ— f;, make the change of
variable ¢ = —t in [ b ,» and use the definition of even or odd function.
14. Give algebraic proofs that for even and odd functions:
(a) - even times even = even; odd times odd = even; even times odd = odd;
(b) the derivative of an even function is odd; the derivative of an odd function is
even.
15. Given f(z) =z for 0<z <1, sketch the even function fo of period 2 and the odd

funiction f, of period 2, each of which equals f(z) on'0 <z < 1. Expand f.ina
cosifie series and f; in a sine series.

L —-—4— cos7r,w+—1—c0s31rz+-~>,
s 32

Answer: foz)= 5

2
falz) = —72; (sinﬂ'z — %sin%m:-{— %sin&rz —_ ) .
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16. Let f(z) = sin®z, 0 < z < . Sketch (or computer plot) the even function fc of
period 27, the odd function fs of period 27, and the function f, of period 7, each of
which: is equal to f(z) on (0,7). Expand each of these functions in an appropriate
Fourier series.

In Problems 17 t0 22 you are given f(z) on an interval, say 0 <’z < b." Sketch several
periods of the even function f. of period 2b, the odd function f, of period 2b, and the
furiction f, of period-b, each of which equals'f(z) on 0 < z < b Expand each of the three
functions in an appropriate Fourier series.

1, 0<z<} 1, 0<z<l

17. = ’ 2 18. z) = ’ ’
/@) {—1, <<t f@ {0, 1<z <3
19. f{z)=]cosz|, O0<z <. '20. flz)=2%, O<z<l.
0< 1 . 10 10
21, f@)=1 " z<, 22, flg)=410 0<=<IO
2—z, l<z<2 20, 10 <z <20

23. If a violin string is plucked (pulled aside and let  f(x, 0)
go), it is possible to find a formula: f(z,t) for T
the displacement at time ¢ of any point z of the T
vibrating string from its equilibrium position. It
turns out that in solving this problem: we need
to expand the function f(z,0), whose graph is the initial shape of the string, in a
Fourier sine 'series. Find this series if a string of length ! is pulled aside a small
distance h at its center, as shown.

24. If, in Problem 23, the string is stopped at the  f(x0)
center and half of it is plucked, then the func-
tion to be expanded in a sine'series is shown b x
here. Find the series. Caution: Note that !
flz,0)=0forl/2<z <.

25. Suppose that f{z) and its derivative f'(z) are both expanded in Fourier series on
(—m, 7). Call the coefficients in the f(z) series ar and b, and the coefficients in the
f'(z) series al, and b;,. Write the integral for a. [equation (5.9)] and integrate it
by parts to get an integral of f'(z)sinnz. Recognize this integral in terms of b,
lequation (5.10) for f'(z)] and so show that &), = —nan. (In the integration by
parts, the integrated term is zero because f{n) = f(-—=) since f is continuous—
sketch several periods.). Find a similar relation for ay; and b,. Now show that this
is the result you get by differentiating the f(z) series term by term. Thus you have
shown that the Fourier series for f'(z) is correctly given by differentiating the f(x)
series term by term (assuming that f'(z) is expandable in a Fourier series).

In Problems 26 and 27, find the indicated Fourier series. Then differentiate your result
repeatedly (both the function and the series) until you get a discontinuous function. Use a
computer to plot f(z) and the derivative functions. For each graph, plot on the same axes
one or more terms of the corresponding Fourier series. Note the number of terms needed
for-a good fit (see comment at the end of the section).

3z +22°, —-1<z<0,
30 - 22, O<z<l

26. f(z)= {

27, flz)=(@*—n")? ~m<z<m.
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Then we have

(103)  p(t)=

5 10. AN APPLICATION TO SOUND

1 (sin524mt 30 sin(524 - 2nt) n sin(524 - 3nt)
4 1 2 3
sin(524 - 5nt)  30sin(524 - 6mt) | sin(524 - Tnt)
5 6 LA Y &

We can see just by looking at the coefficients that the most important term
is the second one. The first term corresponds to the fundamental with frequency
262 vibrations per second (this is. approximately middle C on. a piano). But it is
much weaker in this case than the first overtone (second harmonic) corresponding to
the second term; this tone has frequency 524 vibrations per second (approximately
high C). (You might like to use a computer to play one or several terms of the

We have said that when a sound wave passes through the air and we hear it, the
air pressure where we are varies with time. Suppose the excess pressure a‘nbove (and
below) atmospheric pressure in a sound wave is given by the graph in Fxgure'lo‘.l.
(We shall not be concerned here with the units of p; however, reasonal?le units in
Figure 10.1 would be p in 10~% atmospheres.) Let us ask what frequencies we hear
when we listen to this sound. To find out, we expand p(t). in a Fourier series. The
period of p(t) is 5%55; that is, the sound wave repeats itself 2162 times per .second.
We have called the period 2l in our formulas, so here ! = g3;. The functions we
have called sin(nma/1) here become sin 524nwt. We can save some work by observing

+

p(t) series.) The sixth harmonic (corresponding to n'= 6) and also the harmonics for

— 1""""" Fr— lr—— n = 10, 14,18, 22, and 26 are all more prominent (that'is, have larger’coefﬁcients)

| | ‘ ] | l than the fundamental. We. can be even more specific about the relative importance

| ; i | | ' of the various fréquencies.. Recall that in discussing a simple harmonic oscillator,
-~ -ms 0 B8 ™ = sef;éﬂds we showed that its average energy was proportional to the square of its velocity
| | | : amplitude. It can be proved that the intensity of a sound wave (average energy

—1! -%L—-———‘ -1 striking unit area of your ear per second) is proportional to the average of the

! ' square of the excess pressure. Thus for a sinusoidal pressure variation Asin2rft,

the intensity is proportional to A2. In the Fourier series for p(t), the intensities of the
various harmonics are then proportionial to the squares of the corresponding Fourier
coefficients. (The intensity corresponds roughly to the loudness of the tone—not
exactly becanse the ear is not uniformly sensitive to all frequencies.) The relative
intensities of the harmonics in our example are then:

Figure 10.1

that p(t) is an odd function; there are then only sine terms in its Fourier series and
we need to compute only b,,. Using (9.4), we have

1/524 ' ."_‘"—‘12?4?638?10
(10.1) b, = 2(524) / p(t) sin 524nmwt dt Relative intensity = 1 225 § 0 5 25 55 0 g 9
k 131048 7 1/524 From tk}iS we see even more cl.early that we would hear principally the second
= 1048 /0 sin 524nt di — 5(1048) toss sin 524nrt dt harmonic with frequency 524 (high C).

PROBLEMS, SECTION 10

In Problems 1 to 3, the graphs sketched represent one period of the excess pressure p(t) in
asound wave. Find the important barmonics and their relative intensities. Use a computer
to play individual térms or a sum of several terms of the series.

nw e,
cos— — 1 7cosmr——ccs—2—
Soann | 8 52dnr

= 1048

2 (—%cosﬂ—i-l—{—-;-cosmr).

nw

2 1. p(t)
. 1
From this we can compute the values of by for the first few values of n: :—-—-—-—-—-——-—-i
i
i i
1 JER VRN 1 ES 1 i
n=2(-D)-2F) =73 ew SR E .
T T b .
2 (15, T\_1(% -2 (%) r —
Y t3) T w2 6= 6r \ 2 2 woy
(10.2) by 2 (1 7) 11 by L1 2
3= |1~ = = ‘ .
3r 8 3r 4 n 4 oy = - - -
2 15 7 ol
A 14+ =) =0 bg =0, etc. -3}
b 4«( 5 " +8> s
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3. plt)

3

| ma—— 2t

i 1

:

e I A
; L A

SO

I Problems 4 to 10, the sketches show several practical examples of electrical signals
(voltziges or currents). In each case we want to know the harmonic content of the signal,
that is, what frequencies it contains ‘and in what proportions. To find this, expand each
function in an appropriate Fourier series. Assume in each case that the part of the graph
shown'is repeated sixty timies per second.

<

4. Output of a simple d-c generator; the shape of V(&)
the curve is the absolute value of a sine func- 100
tion. Let the maximum voltage be 100 v.
° I )
5. Rectified half-wave; the curve is a sine function Xt}
for half the cycle and zero for the other half. 5
Let the maximum current be 5 amp, Hint: Be
carefull The value of I here is 1/60, but I{t) =
sint only fromt = 0 to t = 1/120. L,
> 3 :
6. Triangular wave; the graph consists of two (e
straight lines whose equations you must writel 100
The maximuin voltage of 100 v occurs at the
middle of the cycle.
L t
° & ®
7. Sawtooth 8. Rectified sawtooth
o o
10 10
|
3 i - f
126

t

1

T/l l
1?0 &0

9. Square wave 10, Periodic ramp function

v(e) Vie)
100 = 100]
s
| i
t |
O‘ i

)
o
B
b —

[

— 100}~

secuonii S

» 11. PARSEVAL'S THEOREM

We shall now find a relation between the average of the square (or'absolute square) of
#{x) and ‘the coefficients in the Fourier series for f(z), assuming that I F@) P de
is Anite.” The result'is known as Parseval’s theorem or the completeness relation.
You should understand that the point of the theorem is not to get the average of
the square of a given f(z) by using its Fourier series. [Given f (z), it is easy to get
its average square just by doing the integration’in (11.2) below.] The point of the
theorem is to show the relation between the average of the square of f (z) and the
Fourier coefficients. 'We can derive a form of Parseval’s theorem from any of the
various Fourier expansions we have made; let us use (5:1).

1 & N
(11.1) flz) = 5%-*-;% cosncv-*-gl:bnsmnx.
We square f{x) and then average the square over (~m,7):

(11.2) The average of [f(z)]? is 51; i [f(2)]*dz.

When we square the Fourier series in (11.1) we get many terms. To avoid writing
out a large number of them, consider instead what types of terms there are and
what the averages of the different kinds of terms are. First, there are the squares
of the individual terms. Using the fact that the average of the square of a sine or
cosine over a period is %, we have:

The average of (1aq)? s (kao)
(11.3) The average of {a, cosnz)? s al- %
The average of (b, sinnz)? is b1

Then there are cross-product terms of the forms 2 - %aoan cosnz, 2 - %aobn sinne,
and 2a,bm cos nz sinma with m # n (we write n in the cosine factor and m in the
sine factor since every sine term must be multiplied times every cosine term). By
(5.2), the average values of terms of all these types are zero. Then we have

2 o0 oo
(11.4) The average of {f(z)]? (over a period) = (%ao) + % }_;ai + %zljbi

This is one form of Parseval’s theorem. You can easily verify (Problem 1) that the
theorem is unchanged if. f(x) has period 2! instead of 27 and its square is averaged
over any period of length 21. You can also verify (Problem 3) that if f(z) is written
as a complex exponential Fourier series, and if in addition we include the possibility
that f(z) itself may be complex, then we find:

o0
(11.5) The average of |f(x)[? {over a period) = Z lenl?.
—c0
Parseval’s theorem is also called the completeness relation. In the problem of

representing a given sound wave as a sum of harmonics, suppose we had left one of
the harmonics out of the series. It seems plausible physically, and it can be proved
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mathematically, that with one or more harmonics left out, we would not be able to
represent sound waves containing the omitted harmonics. We say that the set of
functions sinnz, cosnz is a complete set of functions on any interval of length 2m;
that is, any function (satisfying Dirichlet conditions) can be expanded in a Fourier
series whose terms are constants times sinnz and cosnz. If we left out some values
of n, we would have an incomplete set of basis functions (see basis, page 357) and
could not use it to expand some given functions. For examiple, suppose that you
made a mistake in finding the period (that is, the value of 1) of your given function
and tried to use the set of functions sin 2nx, cos 2nz in expanding a given function
of period 2. You would get a wrong answer because you useéd an incomplete set-
of basis functions {with the sinz, cosz, sin3z, cos 3z, .-+, terms missing). If your
Fourier series is wrong because the set of basis functions you use is incomplete, then
the results you get from Parseval's theorem (11.4) or:(11.5) will be wrong too. In
fact, if we use an incomplete basis set in, say, (11.5); then there are missing (non-
negative) terms on the right-hand side, so the equation becomes the inequality:
Average of |f(z)|? > 3%, lea|?. This is known as Bessel’s inequality. Conversely,
if (11.4) and (11.5) are correct for all f(z), then the set of basis functions used
is a complete set. This is why Parseval’s theorem is often called the completeness
relation. (Also see page 377 and Chapter 12, Section 6.)

Let us look at some examples of thé physical meaning and the use of Parseval’s
theorem.

» Example 1. In Section 10 we said that the intensity (energy per square centimeter per

second) of a sound wave is proportional to the average value of the square of the
excess pressure. 1f for simplicity we write (10.3) with letters instead of numerical
values, we have

(11.6) plt) = ibn sin 27n ft.
1

For this case, Parseval’s theorem (11.4) says that:

oo o0
1
(11.7)  The average of [p(t)]* = E b2 - 5= E the average of b2 sin® 2n7 ft .
1 1

Now the intensity or energy (per square centimeter per second) of the sound wave
is proportional to the average of [p(t)}?, and the energy associated with the nth
harmonic is proportional to the average of b2 sin® 2n7 ft. Thus Parseval’s theorem
says that the total energy of the sound wave is equal to the sum of the energies
associated with the various harmonics.

» Example 2. Let us use Parseval’s theorem to find the sum of an infinite series. From

Problem 8.15(a) written in complex exponential form we get:
The function f(z) of period 2 which is equal to  on (~1,1)

- ____j;(eiﬂ'x — e-—i’/r:t — le%xx + _;_e—%ww + éesiﬂ'.’t - %e—f}imn o )
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11
1 3

By Parseval’s theorem (11.5), this is equal to 3.7 |ca|?, s0 we have

Let us find the average of [f(z)]? on (—1,1).

1/t 17
Th f 2= - 2dp = - | =
e average of [f(z)] 2/_11 dz 5 [3

1 o~ 0 1 1 1,1 1 21
g"z;icﬂ =F(1+1+Z+Z+§+§+“'=}72?'
— 1
Then we get the sum of the series
1 1 1 7% 1 a?
1+._+_. R iR
4 9+ ;nz’ 2 3 6

We have seen that a function given on {0,1) can be expanded in a sine series by
defining it on (—{,0) to make it odd, or in a cosine series by defining it on (~1,0)
to make it even. Here is another useful example of defining a function to suit our
purposes. (We will need thisin Chapter 13.) Suppose we want to expand a function
defined on (0,1) in terms of the basis functions sin(n + £)EE =sin ﬁz—"—%)—ﬂ Can
we do it; that is, do these functions make up a complete set for'this problem? Note
that our proposed basis functions have period 4i, say (—2I,21) (observe the 2[ in
the denorninator where you are used to 1). So given f(z) on.(0,1), we can define it
as we like on (1, 2l) and on.(~2l,0). We know (by the Dirichlet theorem) that the
functions sin 2% and cos "3, all n, make up a complete set on (—2/,2[). We need
£ see how, on (0, 1) we can se just the sines (that’s easy—make the function odd)
and only the odd values of nn. It turns out (see Problem 11) that if we define f(z)
on {1,21) to make it symmetric around z = [, then all the b,’s for even n are equal
to zero. So our desired basis set is indeed a complete set on (0,1).: Similarly we can

show (Problem 11) that the functions cos Qﬁ%ﬂf make up a complete set on (0,1).

» PROBLEMS, SECTION 11

1. Prove (11.4) for a‘function of period 2! expanded in a sine-cosine series.

2. Prove that if f(z) = 3°°°_ cae'™, then the average value of [f(z)]* is 3.2, cacn.
Show by Problem 7.12 that for real f(z) this becomes (11.5).

8. If f(z) is complex, we usually want the average of the square of the absolute value
of f(x). Recall that |f(z)|® = f(z)- f(z), where f{z) means the complex conjugate
of f(z). Show that if a complex f(z) = 37 cne™ /!, then (11.5) holds.

4, When a current I flows through a resistance R, the heat energy dissipated per second
is the average value of RI%. Let a periodic (not sinusoidal) current I(t) be expanded
in a Fourier series I{t) = 3% cne'®"™. Give a physical meaning to Parseval’s
theorem for this problem,

Use Parseval’s theorem and the results of the indicated problems to find the sum of the
series in Problems 5 to 9.

5. The series T+ L + !

Ftm + -+, using Problem 9.6.

Lo 1
6. The series Z et using Problem 9.9.
n=l
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oo
7.  The series Z ;}5, using Problem 5.8.

n=1

8. The series Z —1—4, using Problem 9.10.
odd n &

1 1 1 .
9,  The series 7 + &= + 55 4« -, using Problem 5.11.
10. A general form of Parseval’s theorem says that if two functions are expanded in

Fourier geries

o0 o
fz) = %ao + ;an cos nx + Z: by, sin ne,

ot o0
glz) = %af) -+ E:aiL cos ne + }:bﬁL sinnz,
1 1

then the average value of f(z)g(x) is taoah -+ % 327 anal + § 3257 bubr,. Prove this.

11. (a) Let f(z) on’(0,2!) satisfy f(2l — ) = f(z), that is, f(z) is symmetric about
z-= I. If you expand. f(z).on (0,2!) in a sine series y_ by sin 5%, show that
for even n, b, = 0. Hint: Note that the period of the sines is 4l. Sketch an
f(z) which is symmetric about « = [, and on the same axes sketch a few sines
to see that thé even ones are antisymmietric about z = [. Alternatively, write
the integral for b, as an integral from 0 to ! plus an integral from [ to'2{, and

replace 7 by 20 z in the second integral.

(b)  Similarly, show that if we define f(2l—z) = — f(z), the cosine series has.a, =0
for even n.

+12. FOURIER TRANSFORMS

‘We have been expanding periodic functions in series of sines, cosines, and complex
exponentials. Physically, we could think of the terms of these Fourier series as
representing a set of harmonics. In music these would be an infinite set of frequen-
cies nf, n = 1, 2, 3, ---; notice that this set, although infinite, does not by any
means include all possible frequencies. In electricity, a Fourier series could repre-
sent a periodic voltage; again we could think of this as made up of an infinite but
discrete (that is, not continuous) set of a-c voltages of frequencies nw. Similarly,
in discussing light, a Fourier series could represent light consisting of a discrete set
of ‘wavelengths A/n, n ='1, 2, ---, that is, a discrete set of colors., Two related
questions might occur to us here. First, is it possible to represent a function which
is not .periodic by something analogous.to-a Fourier series? Second, can we some-
how extend or modify Fourier series to cover the case of a continuous spectrum of
wavelengths of light, or a sound wave containing a continuous set of frequencies?

If you recall that an integral is a limit of a sum, it may not surprise you very
much to-learn that the Fourier series (that is, a sum of terms) is replaced by a
Fourier z‘ntqgml in the above cases. The Fourier integral can be used to represent
nonperiodic functions, for example a single voltage pulse not repeated, or a flash
of light, or a sound which is not repeated. The Fourier integral also represents
a continuous set (spectrum) of frequencies, for example a whole range of musical
tones or colors of light rather than a discrete set.
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Recall from equations (8.2) and (8:3), these complex Fourier series formulas:

f(:I:) = f:cneimrx/l)
(12.1) o0

v ;
— —inmz [l
Cn =5 /»1 f(z)e dz.

The period of f(z) is 21 and the frequencies of the térms in the series are n/(21).
We now want to consider the case of continuous frequencies.

Definition of Fourier Transforms We state without proof (see plausibility ar-
guments below) the formulas corresponding to (12.1) for a continuous range of
frequencies.

Compare (12.2). and (12.1); g(a) corresponds to ¢, o corresponds to'n; and jfom
corresponds to Y7 . "This agrees with-our discussion’of the physical meaning and
use of Fourier integrals: The quantity « is a continuous analog of the integral-valued
variable 1, and so the set of coefficients ¢, has become a function g{a); the sum
over n has become an integral over «.- The two functions f(z) and g(a) are called
a pair of Fourier transforms. Usually, g(«) is called the Fourier transform of f(z),
and f(z) is called the inverse Fourier transform of g(a), but since the two integrals
differ in form only in the sign in the exponent, it is rather common simply to call
either a Fourier transform of the other. You should check the notation of any book
or computer program you are.using. Another point on which various references
differ is the position of the factor 1/(27) in (12.2); it is possible to have it multiply
the f(z) integral instead of the g(«) integral, or to have the factor 1/v/27 multiply
each of the integrals.

The Fourier integral theorem says that, if a function f(z) satisfies the Dirichlet
conditions (Section 6) on every finite interval, and if [ |f(z)|dz is finite, then
(12:2) is correct.. That is, if g(&) is computed and substituted into the integral
for f(z) [compare-the procedure of ¢omputing. the ¢;’s for a Fourier series and
substituting them into the series for f(z)], then the integral gives the value of f(z)
anywhere that f(z) is continuous; at jumps of f(z), the integral gives the midpoint
of the jump (again compare Fourier series, Section 6). The following ‘discussion
is not a mathematical proof of this theorem but is intended to help you see more
clearly how Fourier integrals are related to Fourier series.
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It might seem reasonable to think of trying to represent a function which is
not periodic by letting the period (~1,1) increase to (—00,00). Let us try to do
this, starting with (12.1). If we call nz/l = oy and Opy1 — 0 = 7w/l = Ac, then
1/(20) = Aa/{(2r) and (12.1) can be rewritten as

(12.3) fz) = Z cre®n®,

! ; Ao [ .
(12.4) Cn = '2% /vlf(ﬂv)eﬁw"Ln dz = —2—7% /—t flw)e " du.

(We have changed the dummy integration variable in ¢, from z to u to avoid later
confusion.) Substituting (12.4) into (12.3), we have

i l N L
flz) = Z %% /Mz Flu)e™on® du} gon®

(129 S A [ 1
= = ioen (T —u) —
=3 p L flu)e du %ZF(%)A&,
% / el
where
1
(12.6) Flom) ___./ Fuyern =) dy,
-1

Now $°%°_ F(an)Aa looks rather like the formula in calculus for the sum whose
limit, as Ao tends to zero, is an integral. If we let [ tend to infinity [that is, let the
period of f(z) tend to infinity], then Ao = x/l — 0, and the sum 3 Flon)Aa
goes over formally to ffooo F(a)da; we have dropped the subscript n on a now that
it is a continuous variable. We also let [ tend to infinity and o, = « in {12.6) to get

(12.7) F(a) = f - Flu)eeE% gy,

Replacing 3% F(an)Aa in (12.5) by J2° F{a)da and substituting from (12.7)

oo

for F(o) gives

fo)= o [ Feyda= = [7 [ s dudo

(12.8) L e . ‘
= e da / flw)e " du.

2m -0 —00
If we define g{a) by

1 o —iox - 1 ° —iou g, -
(12.9) / gla) = 5;/_00 flx)e do = o /_oo flu)e du,
then (12.8) gives
(12.10) fla) = / g(a)e’™® da.
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These equations are the same as (12.2). Notice that the actual requirement for the
factor 1/(2m) is that the product of the constants multiplying the two integrals for
g{a) and f (z) should be 1/(2r); this accounts for the various notations we have
discussed before.

Just as we have sine series representing odd functions and cosine series rep-
resenting even functions' (Section: 9); so we have sine and ‘cosine Fourier integrals
which represent odd or even functions respectively. - Let us prove that if f(z) is
0dd, then g(a) is odd too, and show that in this case (12.2) reduces to a pair of
sine transforms. The corresponding proof for even f(z) is similar (Problem 1). We
substitute

e = cosax — i sinax

into. (12.9) to get
l o0
(12.11) gla) = o / f{z)(cos az — isinox) dx.

Since cosaz is even and we are assuming that f(z) is odd, the product f(z)cos ax
is odd. Recall that the integral of an odd function over a symmetric interval about
the origin (here, —o0 t0 #400) is zero, 50 the term ffzo flzyeosaz dz-in (12:11) is
zero.- The product f(z) sinaz is-even (prodict of two odd functions); recall that
the integral of an even function over a symmetric interval is twice the integral over
positive:z. Substituting these results into (12.11), we have ‘

(12.12) gla) = —2}7; /;oo flx)(—isinaz)dr = M:r; /Ooo f(z)sinax dz.

From (12.12), we can see that replacing « by —« changes the sign of sin az and so
changes the sign of g(a). That is, g(—¢) = —g(a), so g(a) is an odd function as
we claimed. Then expanding the exponential in (12.10) and arguing as we did to
obtain (12.12), we find

o0 o0
(12.13) flz) =/ gla)e*® do = ‘,Zfi/ g(a)sinaz da.
-0 4]

If we substitute g(a) from (12.12) into (12.13) to obtain an equation like (12.8), the
numerical factor is (—4/7){(2¢) = 2/m; thus the imaginary factors are not needed.
The factor 2/7 may multiply either of the two integrals or each integral may be
multiplied by 1/2/m. Let us make the latter choice in giving the following definition.

We discuss even functions in a similar way (Problem 1).
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» Examplel. Let usrepresent a nonperiodic function as a Fourier ,_.....1 oy
integral. The function ! :
| i x
(@) 1, —-l<z<li, -1 0 1
) =
0, fxl>1, Pigure 12.1

shown in Figure 12.1 might represent an impulse in mechanics (that is, a force
applied only over a short time such as a bat hitting a baseball), or a sudden short
surge of current in electricity, or a short pulse of sound or light which is not repeated.
Since the given function is not-periodic, it cannot be expanded in a Fourier series,
since a Fourier series always represents a periodic function. Instead, we write f(z)
as & Fourier integral as follows. Using (12.9), we calculate g(c); this process is like
finding the c,’s for a Fourier series. We find

1 h —iom — 1 . -t g,
(12.16) g(a) = ﬂ/”wf(x)e dz= = /_le du

1 e—iam 1

1 e7 —¢l*  sina
2n —ix

o —2 figes

~1

We substitute g{a) from (12.16) into the formula (12.10) for f () (this is like sub-
stituting the evaluated coeflicients into a Fourier series). We get

oo s

SINO o
/ _____610{1« dm
oo QX

1 /"°° sina(cosaw+isinaa:d 2 [‘x’ sin o cos aw
. o= = SR
0 a

il

(1217)  f(=)

do

T ) e’ w
since (sina)/c.is an even function. We thus have an integral representing the

function f(z) shown in Figure 12.1.

» Example2. We can use (12.17) to evaluate a definite integral. Using f(z) in Figure 12.1,
we find

®sinacosar , W _JE forfaj<l, Gor jz) =1,
(12.18) /0 « da= 2f(ac) B {0 for |z} > 1. v

Notice that we have used the fact that the Fourier integral represents the midpoint
of the jump in f(z) at |z| = 1. If we let z =0, we get
®sina

T
2l da = =,
(12.19) | o de=3

Section 12 TUULIBE UV « Q0w

We.could have done this problem by observing that f(z) is an even function and so
can be represented by a cosine transform. The final results (12.17) to (12.19) would
be just the same (Problem 2).

In Section 9; we sometimes started with a function defined only for z > 0 and
extended it to be even or odd so that we could represent it by a cosine series or by
a sine series: Similarly, for Fourier transforms, we can represent a function defined
for x > 0 by either a Fourier cosine integral (by defining it for z < 0 so that it is
even), or by a Fourier sine integral (by defining it for z < 0 so that it is odd). (See
Problem 2 and Problems 27 to 30.)

Parseval’s Theorem for Fourier Integrals Recall (Section-11)-that Parse-

val’s theorem for a Fourier series f{z) = Y.%°_ cne™™®/! rélates fiz |fiZdz and
322 len|?. In physical applications (see Section 11), Parseval’s theorem says that
the total energy (say in:a'sound wave,-or in an electrical signal)-is equal to the sum
of the energies associated with the various harmonics. Remember that a Fourier
integral represents a continuous spectrum of frequencies and that g(o) corresponds
to ¢,. Then we might expect that 3°°°_|c,|? would be replaced by [*7_ lg(e)|?der
(that is, a “sum” over a continuous rather than a discrete spectrum) and that Par-
seval’s theorem would relate [ {f|?dz and [°7_|gl%da. Let us try to find the
relation.

We will first find a generalized form of Parseval’s theorem involving two functions
fi(z), folz) and their Fourier transforms g; (o), g2(c). Let §i(a) be the complex
conjugate of g1(a); from (12.1), we have

o0

(12.20) fifa) = —21; [_Oo fl(w)eiumda;.

We now multiply (12.20) by g2(a) and integrate with respect to a:

w2 [ am@d=g [T [ A o] e

Let us rearrange (12.21) so that we integrate first with respect to «. [This is
justified assuming that the absolute values of the functions f, and f; are integrable
on (—o0,0c0).]

w2 [ A { [ stares da} = [ A

by (12.2). Thus

(12.23) / " n@lada= o [ " @) fala) do.

(Compare this with the corresponding Fourier series theorem in Problem 11.10.) It
we set fi = fo = f and g1 = g2 = g, we get Parseval’s theorem:

T

(12.24) [ w@pda= o [ @b
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i PROBLEMS, SECTION 12

1. Followitig a method similar to that used in obtaining equations (12.11) to (12.14),
show that if f(z) is even, then g(c) is even too. Show that in this case f(z) and
g(@) can 'be written as Fourier cosine transforms and obtain (12.15).

2. D6 Example 1 above by using a cosine transform (12.15). Obtain (12.17); for z >0,
the 0 to oo integral represents the function

1, 0<e<l,
=y 05t

Represent this function also by a Fourier sine integral (see the paragraph just before
Parseval’s theorem).

In Problems 3 to 12, find the exponential Fourier transform of the given f(z) and write
f(z) as a Fourier integral [that is, find g(a) in equation (12.2) and substitute your result
into the first integral in equation (12.2)].

—h mw<z<0 1, w/2< el <
™
3. flz)= 1, O<z<w 4. f(:z):{ ’ !
0, otherwise
0, |z|>n
1, O<z<l z, |z«
5. 2} = 6. )=
/=) {0, otherwise @) {0, lz{ > 1
lz], lzl <1 z, O<z<1
7. = 8. =
@) 0, lzi>1 f@) 0, otherwise
9. f(x) 10. flx)
2a 2a
-G a * — 15} 3 x
-2a
cosz, —m/2<zL< /2 sinz, le]<n/2
i1, flz) = / / 12, f(@) = |z} </
0, J|zj>n/2 0, fjz|>w/2

Hint: In Problems 11 and 12, use complex exponentials.

In Problems 13 to 16, find the Fourier cosine transform of the function in the indicated
problem, and write f(x) as a Fourier integral [use equation (12.15)]. Verify that the cosine
integral for f(z) is the same as the exponential integral found previously.

13. Problem 4. 14. Problem 7.

15. Problem 9. 16. Problem 11.
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In Problems 17 to 20, find the Fourier sine transform of the function in the indicated
problem, and write f(z) as a Fourier integral [use equation (12.14)]. Verify that the sine
integral for f(z) is the same as the exponential integral found previously.

17. Problem 3. 18. . Problem 6.

19. Problem 10. 20. Problem 12.

21. Find the Fourier transform of f{z) = == (@) Hint: Complete the square in the
z terms in the exponent and make the change of variable y =z + o%ia. Use tables
or computer to evaluate the definite integral.

22. The function ji(a) = (acosa — sine)/a is of interest in quantum mechanics. [It
is called a spherical Bessel function; see Chapter 12, equation (17.4).] Using Prob-
lem 18, show that

fal) wz/2, ~l<z<l,
) sin ax da =
[0 gr{@) sin o do { 0, |z >1

23. Using Problem 17, show that
f 1 —cosma
e gin @ dix =
o a

> 1~ cosma
B e e T
o a

E RN

24. (a) Find the exponential Fourier transform of f(z) = el and write the inverse
transform. You should find

* cos oz g
/0 a2+1da— 56 .

(b) Obtain the result in (a) by using the Fourier cosine transform equations (12.15).

(¢) Find the Fourier cosine transform of f(z) = 1/(1 + z®). Hint: Write your
result in (b) with = and o interchanged.

25. (a) Represent as an exponential Fourier transform the function

sinz, O0<z<m,
€T} =
1) { 0, otherwise.

Hint: Write sinz in complex exponential form.

(b) Show that your result can be written as

_ 1 [*®cosax+cosalz ~ )
@)=+ s alE =) o,

26. Using Problem 15, show that

/'°°1—-cosa T
————2———da=—.
o I3 2

Represent each of the following functions (a) by a Fourier cosine integral; (b) by a Fourier
sine integral. Hint: See the discussion just before Parseval’s theorem.

1, 2<z<4
0, 0<z<2 z>4

1, O<z<n/2

2. fla)= {0 @ > /2

28. f(z)= {
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10.

11
12.

13.

14.

15.

16.

17,

18.

(a) Sketch at least three periods of the graph of the function represented by the
cosiné series for f(z) in Problem 9.

(b) Sketch at least three periods of the graph of the exponential Fourier series of
périod 2 for f(z) in Problem 9.

(¢) To what value does the cosine series in (a) converge at z = 07 At z = 17 At
z=2? Atz =-27

(d) To what value does the exponential series in (b) converge at x = 0?7 Atz =17
At =37 At o = =2

Pind the three Fourier series in Problems 9 and 10.
What would be the apparent frequency of a sound wave represented by

ks cos 60nmt
plt) = n; 100(n —3)2 +1

(a) Given f(z)= (7 ~=z)/2on (0,7), find the sine series of period 2 for f(z).
(b) Use your result in (a) to evaluate S 1/n?.

(2) Find the Fourier series of period 2 for f(z) = (z — 1)% on (0,2).

(b) Use your result in (a) to evaluate o 1/nt

1, —2<x<b,
f(z)—{—l, 0<z<2

find the exponential Fourier transform g(c) and the sine transform gs(a). Write
f(z) as an integral and use your result to evaluate

Given

/°° (cos 2a = 1) sin 2c de.
o o
Given
z, 0<z< 1,
fle)=4q2~2, 1<3<2,
0, z 22,

find the cosine transform of f(x) and use it to write f(z) as an integral. Use your

result to evaluate
* cos? asin’ a/2
e e
0

o

Show that the Fourier sine transform of z/? is o™*/2. Hint: Make the change
of variable z = ax. The integral f(;x’ 2" Y2 gin zdz can be found by computer or in
tables.

Let f(z) and g(a) be a pair of Fourier transforms. Show that df /dz and iag(a) are
a pair of Fourier transforms, Hint: Differentiate the first integral in (12.2) under
the integral sign with respect to z. Use (12.23) to show that

/00 olg(a)? da = 5% -/—00 f(x)a%f(x) dz. .

;
Comment: This result is of interest in quantum mechanics where it would read, in
the notation of Problem 12.35:

[ e a= [~ v (G ) v
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19.

20.

21.

22,

23.

Find the form of Parseval’s theorem (12.24) for sine transforms (12.14) and for cosine
transforms (12.15).

Find the exponential Fourier transform of

_J2a—lzl, |zl <2,
f) = { 0, j] > 2a,

and use your result with Parseval's theorem to evaluate

> sin* aa
sin_0a g,
.

Define a function h(z) = S-oo ___ f(z + 2kn), assuming that the series converges
to & function satisfying Dirichlet conditions (Section 6). Verify that h(z) does have
period 2.

(a) Expand h(z) in an exponential Fourier series h{x) = 57 cne'™; show that
en = g(n) where g{c) is the Fourier transform of f(z). Hint: Write ¢, as an
integral from 0 to 27 and make the change of variable u = z + 2km. Note that
e~267 = 1 and the sum on k gives a single integral from ~—oo to co.

(b) Letz = 0in (a) to get Poisson’s summation formula S F(2km) =37 g{n).
"This result has many applications; for example: statistical mechanics, commu-

nication theory, theory of optical instruments, scattering of light in'a liquid,
and 80 on. (Se¢ Problem 22.)

Use Poisson’s formula (Problém 21b) and Problem 20 to show that

oo .2
TEnf e 0<o<n
T

(This sum is needed in the theory of scattering of light in a liquid.) Hint: Consider
f(z) and g{a) as in Problem 20. Note that f(2km) = 0 except for k = 0 ifa<m
Put a =n,a=96.

Use Parseval’s theorem and Problem 12.11 to evaluate

/°° cos®(am/2) da
L Ty

(1-a?)?




