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A method for the description of theN-soliton interaction, which generalizes in a natural way the Karpman-
Solov’ev one for the nonlinear Schro¨dinger ~NLS! equation, is proposed. Using it, we derive a nonlinear
system of equations describing the dynamics of the parameters ofN well separated solitons with nearly equal
amplitudes and velocities. Next we study an exhaustive list of perturbations, relevant for nonlinear optics,
which include linear and nonlinear dispersive and dissipative terms, effects of sliding filters, amplitude and
phase modulation, etc. We prove that the linear perturbations affect each of the solitons separately, while the
nonlinear ones also lead to additional interactive terms between neighboring solitons. Under certain approxi-
mations we show that theN-soliton interaction for the unperturbed NLS equation is described by the complex
Toda chain~CTC! with N nodes, which is a completely integrable dynamical system with 2N degrees of
freedom. A comparison made by numeric simulation shows that CTC gives an adequate description for the
soliton interactions for a number of choices of the initial conditions.@S1063-651X~97!03104-8#

PACS number~s!: 42.65.2k, 42.81.Dp, 42.65.Tg
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I. INTRODUCTION

As is well known, the nonlinear Schro¨dinger equation
~NLSE! serves as a basic physical model with applications
quantum mechanics, hydrodynamics, plasma physics, n
linear optics, etc. The NLSE can be integrated by using
inverse scattering method@1#. This allows for an exhaustive
study of its properties as an infinite dimensional complet
integrable Hamiltonian system. Moreover, the interaction
the solitons of the NLSE in the generic case, when all s
tons have different velocities is well known@1,2#. However,
the cases when two or several solitons move with the s
velocity @3#, or when the perturbed NLSE

iut1
1
2uxx1uuu2u~x,t !5 iR@u# ~1!

is considered, still contain open problems.~Here we used the
normalized dimensionless variablesx and t; the same also
holds true for the soliton parameters, plotted in the figu
below.! At the same time such soliton trains moving in re
media are of great interest for a number of different phys
applications. Typical examples of such applications are o
cal soliton transmission lines@4–6# and nonlinear fiber laser
@5#. For other physical applications, see@7#.

*Permanent address: Institute of Electronics, Bulgarian Acade
of Sciences, Boulevard Tzarigradsko Shosse 72, Sofia 1784,
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To solve such type of problems one may use one of f
methods. The first is an analytical approach based on
inverse scattering method@1,2# and expansions ove
‘‘squared’’ solutions of the Zakharov-Shabat system@8–11#
L. It allows one to relate the variations of the soliton para
eterslk

1 andCk
1 to integrals of the form

Dlk
15Ck

1E
2`

`

dx trˆDQ@u#,C1~x,lk
1!‰, ~2a!

C1~x,l!5S 0 2@ f 1
1~x,l!#2

@ f 2
1~x,l!#2 0

D , ~2b!

DQ@u#5S 0 R@u#

R* @u# 0 D , ~2c!

whereR@u# is the perturbation on the right-hand side of E
~1! and f 1(x,lk

1) and f 2(x,lk
1) are the components of th

Jost solutionf (x,lk
1)5( f2

f1) of L, corresponding to the eigen

valuelk
1 . Somewhat more complicated are the expressi

for DCk
1: the variations of the ‘‘normalization’’ constant

of f (x,lk
1). They have the same structure as Eq.~2! but also

include the derivatives

Ċk
15

d

dl
C1~x,l!ul5l

k
1 .

y
ul-
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Analogous formulas also exist for variations of the scatter
data on the continuous spectrum ofL. In what follows we
will neglect, following @12#, the influence of the continuou
spectrum. This approach, known as the adiabatic approx
tion, is applicable for generic perturbation.

However, the corresponding formulas beyondN51
quickly become so involved that one is not able to anal
them. Another problem arises from the necessity of de
mining the exact scattering data, corresponding to an in
pulse train of the form

u~x,0!5 (
k51

N
2nke

if0k

cosh2nk~x2x0k!
. ~3!

This method has also been used for numerical simulation
several papers@13–17#, where mostly two-soliton interac
tions have been studied. With the growth of the number
pulses the difficulties of such investigations grow en
mously ~see@14#, where some results forN53 have been
obtained!. Applying numerical methods in such an approa
requires a multiple execution of the following procedure
First, starting from the initial condition~3!, one has to deter
mine the corresponding scattering data (Ck

6 , lk
6 and the

possible presence of radiation! and squared solution
Fk

6(x,l) which enter into Eq.~2!. Next, calculating the
right-hand sides of Eq.~2!, one obtains the evolution of th
scattering data, and then one needs to determine the sha
the pulse, corresponding to the data obtained. This co
possibly be simplified and used effectively in cases when
distances between the pulses are large and the numb
solitons is comparatively low; see@15,16#.

The second approach was initiated by the pioneering
per by Karpman and Solov’ev@12#; it is also known as the
quasiparticle approach. It is based on the adiabatic appr
mation mentioned above. Its main idea is to view the int
action as a slow deformation of the soliton parameters
which only the nearest-neighbor interaction should be ta
into account. With it, one is able to study the interaction
soliton trains for some restricted class of initial condition
that is, ~a! the solitons have nearly or exactly equal amp
tudes and velocities and~b! the separation between them
large as compared to their width~more precisely these con
ditions will be stated in Sec. I below!. Under these approxi
mations theN-soliton solution of the NLSE and the corre
sponding squared solutions of the Zakharov-Shabat sys
are very well approximated by linear combinations of th
one-soliton counterparts, and so one is able to derive a
namical system of equations for the soliton parameters. T
was performed effectively in@12# for N52 solitons, where,
moreover, the corresponding dynamical system was so
explicitly. Later this approach was used in a number of
pers for analyzing the two-soliton interactions in the pr
ence of various perturbations, both Hamiltonian and diss
tive ones; for a review, see@4,6#. Although the region of
soliton parameters to which the Karpman-Solov’ev~KS!
method is applicable is comparatively small, it represen
substantial physical interest, since a great part of the exp
mentally studied solitonlike pulses in nonlinear fiber opt
satisfy these conditions.

The third approach that can be used for analyzing
soliton interactions is the so-called variational approach p
g
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posed by Anderson and co-workers@18,19#. It is based on
the Lagrangian formulation of the corresponding perturb
NLSE. To use it, one needs an ansatz for the pulse solut
thus fixing up the parametrization of the pulse. Then, ins
ing it into the Lagrangian one is able to derive a set of d
namical equations for the evolution of the parameters. T
method is more flexible than the KS approach in the se
that a larger class of initial pulses~e.g., chirped solitons@20#!
can be considered. On the other hand, it is limited by
requirement that the perturbed NLSE has to be Hamilton
which is not necessary for the KS method. A method p
posed by Malomed@21# combines ideas from the second a
third approaches. There the author derived and investig
the properties of the effective interaction Hamiltonian d
scribing the two-soliton interactions of the perturbed NLS
and its generalization, the Ginzburg-Landau equation.

Note that practically all results obtained by the abov
mentioned three analytical approaches concern the t
soliton interaction. Meanwhile it was shown that a solit
train consisting ofN interacting solitons may be considere
an interesting type of dynamical system with its own pec
liarities @14,22–25#. Obviously theN-soliton interaction is
representative of situations encountered in communica
lines. The main tool for analyzing this problem was t
fourth approach, based on direct numerical solving of
NLSE by the beam propagation method; for a review, s
@5#. Moreover, the numerical solution of the NLSE is th
main test in analyzing the applicability of the analytical tec
niques mentioned above.

Our aim in the present paper consists of generalizing
KS method to the case ofN well separated interacting soli
tons with nearly or exactly equal amplitudes and velociti
In Sec. II we derive the generalization of the KS system
theN-soliton solution of the NLSE without perturbation. W
prove, as was conjectured in@26,27#, that the interaction is of
the nearest-neighbor type.

In Sec. III we explicitly obtain the effect of three differen
classes of perturbations to the generalized KS system.
prove that perturbations linear inu lead only to self-
interaction terms for each of the solitons separately. The p
turbations cubic inu give rise not only to self-interaction
terms, but also influence the interaction terms between
neighboring solitons. In Sec. III C, we analyze the drivin
force case and two perturbations linear inu, whose coeffi-
cients depend explicitly onx; they also lead only to self-
interactive terms.

In Sec. IV we find that, under certain approximations, t
N-soliton interaction for the unperturbed NLS equation
described by the complex Toda chain~CTC! with N nodes.
The genericN-soliton solution, as well as the generalize
Karpman-Solov’ev system~GKS! and the CTC withN nodes
are dynamical systems with 2N degrees of freedom. The
CTC is obtained from the well known real Toda chain~RTC!
@28,29# by a complex extension of its dynamical variable
Numerical studies show that the RTC describes very well
positions and velocities ofN interacting equidistant and out
of-phase solitons with~nearly! equal amplitudes@31#. The
RTC cannot provide a description of the amplitudes a
phase differences, which are assumed to be constants.
and GKS take into account all 4N soliton parameters, and
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55 6041NONLINEAR SCHRÖDINGER EQUATION AND N- . . .
one may expect that they will have wider applicability, e.
they could be used not only for out-of-phase solitons.

It is well known that the standard RTC with real-value
dynamical variables is a completely integrable Hamilton
system@28,29#. Some of these results for the RTC can
generalized for the CTC in a quite straightforward way. T
is so for the Lax representation and the classicalr -matrix
method~see@2#!. Using them, we show that the CTC po
sessesN complex-valued~or 2N real-valued! integrals of
motion in involution, and hence is also completely int
grable.

Formally the solutions of the CTC can be obtained fro
the ones of the RTC by taking the parameters to be comp
This means that the class of solutions of the CTC is larg
and so is the variety of their asymptotic behaviors. In ad
tion, while all solutions of the RTC are regular for all valu
of t, some of the solutions of the CTC~for particular choices
of the initial conditions! develop singularities for finite val
ues oft @32#. This is so even for the simplest caseN52; the
corresponding CTC is equivalent to the KS system which
both periodic and singular solutions.

Our result in this respect is that the CTC provides a go
description for the soliton interactions for a number of d
ferent choices of the initial conditions, see Sec. IV A. Th
holds true even for some of the singular solutions, which
adequate for values oft outside of small region around th
singularities. Another important conclusion drawn here
that theN-soliton interaction may contain principally differ
ent effects as compared to the elementary two-soliton in
actions and to the RTC dynamics; see Sec. IV F.

We conclude with some conclusions and open proble
Part of the results in this paper have been previewed
@30,31,33#.

II. N-SOLITON KARPMAN-SOLOV’EV SYSTEM

A. Derivation of the generalized Karpman-Solov’ev system

This section will be devoted to the NLS equation, i.e.,
Eq. ~1!, with

R@u#50. ~4!

The particular cases with linear and cubic inu perturbations,
including a number of physically important ones, will b
considered in the following sections.

We start by reminding the reader of the main results
Karpman and Solov’ev@12# and generalizing them to th
case ofN interacting solitons.

It is well known that the NLS equation is a complete
integrable Hamiltonian system. It can be solved with the h
of the inverse scattering method~ISM! applied to the so-
called Zakharov-Shabat system:

L f ~x,t,l![S is3

d

dx
1Q~x,t ! D f ~x,t,l!5l f ~x,t,l!,

~5!

where the potentialQ(x,t) is expressed in terms ofu(x,t) by

Q~x,t !5S 0 u~x,t !

2u* ~x,t ! 0 D . ~6!
,

n

s

-

x.
r,
i-

s

d

e

s

r-

s.
in

f

p

There are many ways to derive the reflectionless pot
tials of L and its corresponding eigenfunctions; this imme
ately produces the soliton solutions of the NLS equation.
what follows below we shall need a convenient parametri
tion for the one soliton solution and the corresponding eig
function ofL:

u1s~z,t !5
2neif

coshz
, ~7a!

z52n@x2j~ t !#, ~7b!

f~z,t !5
m

n
z1d~ t !, ~7c!

j~ t !52mt1j0 , ~7d!

d~ t !52~m21n2!t1d0 , ~7e!

f ~x,t,l!5
eilx

2 coshz S 2 ie2 if

ez D . ~7f!

We have denoted byd(t) and j(t) the soliton phase and
position, respectively;d0 and j0 determine their initial val-
ues fort50; n is the soliton amplitude andm is its velocity.

Physically the most interesting initial configurations a
those representing sum of well separated pulses with ne
equal amplitudes and velocities, that is,

u0~x!5uNs~x,t50!, ~8!

uNs~x,t !. (
k51

N

uk~zk ,t !, ~9!

where uk(zk ,t) is given by Eq.~7a! with z, f, j, and d
replaced byzk , fk , jk, anddk, respectively.

An important paritcular case of Eq.~8! is the case in
which the eigenvalues ofL have equal real parts. Such a
inital condition is usually referred to as anN-soliton bound
state.

We stress here that generically the Zakharov-Shabat
tem with a potential fixed by the initial condition~8! pos-
sessesN pairs of eigenvalueslk

65m̃k6 i ñk and some non-
trivial scattering data on the continuous spectrum. This fa
together with the problem of reconstructing of the spec
data ofL, corresponding to initial conditions~8! and ~9! for
N52 and 3 was analyzed in@14#. Generically, even for ini-
tial conditions withmk50 andnk5n, we obtain eigenvalues
with ñkÞñ j and m̃kÞm̃ j for kÞ j , i.e., the operatorL has
N simple discrete eigenvalues. Most of the results obtai
with the ISM have been derived precisely for this gene
situation. However, the nontrivial interrelation betwe
nk ,mk andñk ,m̃k presents as one of the serious difficulties
the analytical approach.

To our assumptions above we add one more: that the s
tons are well separated, so that their overlap is small. T
theN-soliton solution can well be approximated by the su
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of N one-soliton terms as in Eq.~9! above. Mathematically
these restrictions can be expressed as

umk2mnu!m, ~10a!

unk2nnu!n, ~10b!

m5
1

N (
k51

N

mk , ~10c!

n5
1

N(
k51

N

nk , ~10d!

nuj0k2j0nu@1, ~10e!

unk2nnuuj0k2j0nu!1. ~10f!

Next we insert Eq.~9! into Eq.~1! with R@u#50. It is not
difficult to see that, due to nonlinearity, thekth soliton will
be influenced by the others. This influence will contain ter
of first and second order with respect to the overlap. We w
take into account only the first-order terms and suppose
their influence only changes the soliton parameters. Thus
obtain

iuk,t1
1
2uk,xx1uuku2uk5 iRk

~0!@u#1 iR̃k
~0!@u#, ~11!

where

Rk
~0!@u#5 (

nÞk
~2uuku2un1uk

2un* !5 (
nÞk

Rkn
~0!@u#, ~12a!

R̃k
~0!@u#5 (

nÞmÞk
~2ukum* un1unumuk* !. ~12b!

We prove in Appendix B that the terms inR̃k
(0)@u# can in fact

be neglected.
Note that now we have no real perturbation; the ter

Rk
(0)@u# and R̃k

(0)@u# on the right-hand side of Eq.~11! just
take into account the fact that we deal with an approximat
to theN-soliton solution. Analogously, any additional pertu
bative terms on the right-hand side of Eq.~1!,

R@u#5 (
p.0

R~p!@u#, ~13!

will lead to nontrivial contributions to the right-hand side
Eq. ~11!. We will denote there byRk

(p)@u#; their explicit form
will be given in Sec. III below.

Our first aim here will be to evaluate the effect of each
the summandsRk,n

(0) on the right hand side of Eq.~11! on the
parameters of thekth soliton. This can be done in much th
same way as for the two-soliton case. Next we will also ta
into account the possible perturbations. In general the re
can be cast into the forms

dnk
dt

5Nk
~0!@u#1 (

p.0
Nk

~p!@u#, ~14a!
s
ll
at
e

s

n

f

e
ult

dmk

dt
5Mk

~0!@u#1 (
p.0

Mk
~p!@u#, ~14b!

djk
dt

52mk1Jk
~0!@u#1 (

p.0
Jk

~p!@u#, ~14c!

ddk
dt

52~mk
21nk

2!1Xk
~0!@u#1 (

p.0
Xk

~p!@u#, ~14d!

Xk
~p!@u#52mkJk

~p!@u#1Dk
~p!@u#, ~14e!

where the right-hand sides of Eqs.~14a!–~14d! are deter-
mined byRk

(p)@u# through

Nk
~p!@u#5 1

2 E
2`

` dzk
coshzk

Re~Rk
~p!@u#e2 ifk!, ~15!

Mk
~p!@u#5 1

2 E
2`

` dzksinhzk
cosh2zk

Im~Rk
~p!@u#e2 ifk!, ~16!

Jk
~p!@u#5

1

4nk
2E

2`

` dzkzk
coshzk

Re~Rk
~p!@u#e2 ifk!, ~17!

Dk
~p!@u#5

1

2nk
E

2`

` dzk~12zktanhzk!

coshzk
Im~Rk

~p!@u#e2 ifk!,

~18!

wherep50,1,2, . . . .
First we deal withRk

(0)@u#. Inserting into Eqs.~15! and
~16! the expressions forRkn

(0)@u#, which due to Eqs.~7a!–~7e!
and ~12! take the form

Rkn
~0!@u#e2 ifk5

8nk
2nn

cosh2zkcoshzn
~2ei ~fn2fk!1ei ~fk2fn!!,

~19!

we find

Nk
~0!@u#5 (

nÞk
Re4nk

2nn@2e
2 if0;knP3~2akn ,bkn ,bkn!

1eif0;knP3~akn ,bkn ,bkn!#, ~20!

Mk
~0!@u#5 (

nÞk
Im4nk

2nn@2e
2 if0;knQ4~2akn ,bkn ,bkn!

1eif0;knQ4~akn ,bkn ,bkn!#, ~21!

where

Pp~a,b,b!5E
2`

` dz eiaz

coshpz cosh@~11b!z1b#
, ~22!

Qp~a,b,b!5E
2`

` dz eiazsinhz

coshpz cosh@~11b!z1b#
, ~23!

and the parametersakn , bkn, and bkn , depending on the
parameters of thekth andnth solitons, and are introduced a
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az1f0→fk2fn5aknzk1f0;kn , ~24!

bz1b→zn2zk5bknzk1bkn , ~25!

akn5
mk2mn

nk
, ~26a!

bkn5
nn2nk

nk
, ~26b!

bkn52nn~jk2jn!, ~26c!

f0;kn5dk2dn22mn~jk2jn!. ~26d!

The calculation ofJk
(0)@u# andDk

(0)@u#, which contain an
additional factor ofz in the integrand, requires a knowledg
of the first derivatives ofPp andQp with respect toa.

The calculation of these integrals is described in App
dix A. Most of these integrals cannot be expressed in te
of elementary functions. Even if that was possible, we wo
have obtained an overcomplicated system of equatio
which could hardly be used for practical calculations. The
fore we will limit ourselves to the limit of these integrals fo
akn→0, bkn→0, andbkn@1. Our reasons for this are th
following: first, as is shown in Appendix A, the precise a
swers for these integrals are smooth and well behaved f
tions for small values ofbkn andakn . The second reason i
that we have already neglected terms of the same order a
could account for.

As a result, forb@1 we find

Pp~a,b,b!.4e2ubuS 12
iasb

p21DJp21~a!, ~27a!

Qp~a,b,b!.
4e2ubuAp~a,b!

~p21!~p22!
Jp22~a!, ~27b!

Ap~a,b!5sba
21 i ~p21!a2sb~p22!, ~27c!

sb5 sgnb, ~27d!

where byJp(a) we have denoted the integrals

Jp~a!5E
2`

` dz eiaz

2 coshpz
5E

0

` dxcosax

coshpx
. ~28!

Obviously,Jp(a) are even functions ofa, while their deriva-
tives Jp8(a)5(dJp /da)(a) are odd functions ofa. In par-
ticular, their values fora50 are given by

J1~0!5
p

2
, ~29a!

J2~0!51, ~29b!

dJp~a!

da U
a50

50, ~29c!

J2n~0!5
~2n22!!!

~2n21!!!
, ~29d!
-
s
d
s,
-

c-

we

J2n11~0!5
~2n21!!!

~2n!!!

p

2
. ~29e!

Here we keep thea dependence because, in calculati
Jk

(0)@u# and Dk
(0)@u#, we will need the derivatives o

Pp(a,b,b) andQp(a,b,b) with respect toa.
Now it is not difficult, using Eqs.~27!–~29!, to calculate

the contribution of each summand~19! to the right-hand
sides of Eqs.~14a!–~14d! and to derive the following set o
4N equations, generalizing the Karpman-Solov’ev system

dnk
dt

5 (
nÞk

16nk
2nne

2ubknusinf0;kn , ~30!

dmk

dt
52 (

nÞk
16nk

2nnskne
2ubknucosf0;kn , ~31!

djk
dt

52mk2 (
nÞk

4nnskne
2ubknusinf0;kn , ~32!

ddk
dt

52~mk
21nk

2!1 (
nÞk

~28mknnskne
2ubknusinf0;kn

124nknne
2ubknucosf0;kn!. ~33!

Here the summation is over the nearest neighbors of
kth soliton, i.e., the ones for whichjk2jn is minimal. In-
deed, since we care only about terms of ordere2ubknu, taking
into account the other terms will be an overestimated pre
sion.

It is worth noting, that the number of the summands
Eqs.~30!–~33! will depend very much on the initial configu
ration of the system. In what follows, we suppose that
solitons form a chainlike configuration of nearly equidista
solitons, and that thekth soliton has as its nearest neighbo
thek21st andk11st; then each such sum for 1,k,N will
contain only two terms, while only one fork51 andk5N.
We can also assume without restrictions thatjk,jk11; then
sk,k2151 andsk,k11521. In this case, after introducing th
notations

Sk,n5e2ubknunnsinsknf0;kn , ~34a!

Ck,n5e2ubknunncosf0;kn , ~34b!

we find that the system~30!–~33! can be rewritten as

dnk
dt

516nk
2~Sk,k212Sk,k11!, ~35!

dmk

dt
5216nk

2~Ck,k212Ck,k11!, ~36!

djk
dt

52mk24~Sk,k211Sk,k11!, ~37!
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ddk
dt

52~mk
21nk

2!28mk~Sk,k211Sk,k11!

124nk~Ck,k211Ck,k11!. ~38!

B. Discussion

System~35!–~38! is rather complicated as it is, and ther
fore we have two possibilities to state some properties o
solutions:~i! to solve it numerically and~ii ! to consider some
particular cases as well as some further approximations
order to estimate the performance of system~35!–~38!, we
solve it numerically for different initial conditions and com
pare the obtained results with these from the numerical
lution of the NLSE ~1! by the beam propagation metho
~BPM! @31#. A very good agreement has been identified
the case of initially equal and equidistant pulses with init
phase difference 0 andp. Moreover, it has been shown th
system~35!–~38! could be useful even in describing the i
teraction of pulses with initially unequal amplitudes. Indee
in @34# a numerical comparison between the GKS and BP
has been performed for the case of four equidistant solit
with alternatively changing amplitudes. It has been sho
that there is very good agreement~an error less than 3%!
between them for distances fromr 055 to 10. Several re-
marks are in order.

~1! Up to now we have not considered physical pertur
tions. However, the approximation itself violates the integ
bility of the NLS and leads to the highly nonlinear GKS.

~2! The right-hand sides of the GKS contain two types
terms. The first type describes the soliton self-interact
~see@35#!. The second type of terms is characteristic of t
two-soliton interactions@12#. These terms relate only th
nearest neighbors of the solitons.

~3! Since the GKS is a nonlinear system, then itdoes not
allow superposition principle. Therefore it is not possib
knowing the two-soliton interactions, to describe the inter
tions of N>3 solitons; indeed a middle soliton would b
influenced by its left and right neighbors and its behav
would be very different from one of the end solitons.

~4! TheN-soliton system has 2N degrees of freedom; its
behavior is determined generically by 4N real constants, fix-
ing up its initial condition. Of course such systems wou
have a much wider class of solutions that cannot be redu
to the two-soliton case. An example showing that this
really so is provided in Sec. IV F below.

~5! In Sec. IV we derive an integrable approximation
the GKS, and show that it can be useful for a larger clas
initial conditions.

III. PERTURBED N-SOLITON KARPMAN-SOLOV’EV
SYSTEM

In this section we shall describe the effects to the gen
alized KS system due to the presence of various perturba
termsR(p)@u# on the right hand side of Eq.~1!. In the first
two subsections we consider generic perturbations linear
cubic inu, with complex nonvanishing coefficients. Next w
deal with perturbations relevant for the phase and amplit
modulations and the driving force case. Section III D is d
voted to a brief discussion of the physical meaning of
ts
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perturbations for various choices of the constantscs andds
in Eqs.~39! and ~44!.

A. Case with linear in u perturbations

We start with the case when

R~1!@u#5(
s50

3

cs
dsu

dxs
, ~39!

wherecs5cs01 ics1 are complex constants. Fixing up the
values in a convenient way, we can describe a numbe
physically important perturbations. We shall discuss th
point in Sec. III D.

Inserting these terms into the right hand sides of E
~15!–~18! after somewhat lengthy calculations, we obta
that they lead to the following additional terms in syste
~14a!–~14d!:

Nk
~1!@u#52c00nk24c11mknk28c20nkS nk

2

3
1mk

2D
116c31nkmk~mk

21nk
2!, ~40!

Mk
~1!@u#52

4

3
~c11nk

214c20mknk
2!116c31nk

2~mk
21 7

15nk
2!,

~41!

Jk
~1!@u#52c1014c21mk14c30~3mk

21nk
2!, ~42!

Xk
~1!@u#5c0114c21~mk

22nk
2!116c30mk~mk

22nk
2!.

~43!

As is obvious from the above system, the perturbations lin
in u contribute only terms which are local ink. It is natural
to call such terms self-interactive.

B. Case with cubic inu perturbations

In this subsection we consider three types of cubic per
bations

R~2!@u#5d0uuu2u1
d1
4
u~ uuu2!x1

d2
4

~ uuu2ux2ux* u
2!,

~44!

where again

ds5ds01 ids1 ~45!

are complex constants. The calculations are similar to th
in Sec. III A, although more involved. In particular, due
the presence of derivative terms, some other types of i
grals appear~see the Appendixes!. However, in our approxi-
mations they can be explicitly evaluated. The result here
given by
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Nk
~2!@u#5

16nk
3

3
~d002d21mk!116nk

2(
nÞk

H F3d002d21~2mk1mn!2
nk
3
d10sknGCkn

1Fd01skn1d10~mn2mk!skn1d20mkskn1
nk
3

~d1124d21!GSknJ , ~46!

Mk
~2!@u#52

16nk
4

15
d111

16nk
2

3 (
nÞk

$2@3d01skn1d11nk1d20~2mk1mn!skn#Ckn

1@d001~d1122d20!nkskn1d11~2mk2mn!2d21mk#Skn%, ~47!

Jk
~2!@u#52

2nk
2

3
d1024(

nÞk
$@3d00skn1d10nk2d21~2mk1mn!skn#Ckn

1@d011~d1122d21!nkskn1d10~mn2mk!1d20mk#Skn%, ~48!

Xk
~2!@u#5

4nk
2

3
@3d011mk~3d202d10!#18(

nÞk
$@3~d01nk2d00mkskn!1~d20nk1d21mkskn!~2mk1mn!

2nk~d10mk1d11nkskn!#Ckn2@„d011d10~mn2mk!1d20mk…mk

1„d001d11~2mk2mn!2d21mk2d20nkskn…nkskn#Skn%. ~49!
tu
d

c

rge
C. Pseudolinear types of perturbations

Here we present results for some special type of per
bations, which also present physical interest. These inclu

R~3!@u#5~ c̃x1d!u~x,t !1buxx , ~50!

which is important for the effects of sliding filters@16#, the
driving force perturbation

R~4!5 f 0e
iVx1 f 1e

2 iVx, ~51!

where we considerV to be a real andf 0 and f 1 complex
constants, and

R~5!@u#5~ f 0e
iVx1 f 1e

2 iVx!u~x,t !, ~52!

which describes the phase and amplitude modulation effe
Skipping the calculations we present the results

Nk
~3!@u#52c̃0nkjk~ t !28bnkS nk

2

3
1mk

2D 12dnk , ~53!

Mk
~3!@u#5 1

2 c̃12
16
3 bmknk

2 , ~54!

Jk
~3!@u#5

p2

8nk
2 c̃0 , ~55!

Xk
~3!@u#52

p2

4nk
2mkc̃01 c̃1jk~ t !, ~56!

Nk
~4!@u#5

p

2 coshvk
ReF1~Vjk!, ~57!

Mk
~4!@u#5

vk

coshvk
ReF2~Vjk!, ~58!
r-
e

ts.

Jk
~4!@u#52

p2

8nk
2

sinhvk

cosh2vk
ImF2~Vjk!, ~59!

Xk
~4!@u#5

p2

8nk
2

sinhvk

cosh2vk
Im$F1~Vjk!22mkF2~Vjk!%,

~60!

wherevk5pV/4nk and

F6~Vjk!5~ f 0e
i jkV6 f 1e

2 i jkV!, ~61!

and

Nk
~5!@u#5

2nkvk

sinhvk
ReF1~Vjk!, ~62!

Mk
~5!@u#5

2nk
p

vk
2

sinhvk
ReF2~Vjk!, ~63!

Jk
~5!@u#5

p

2nk

12vkcothvk

sinhvk
ImF2~Vjk!, ~64!

Xk
~5!@u#5

vk
2cothvk

sinhvk
ImF1~Vjk!

1
pmk

2nk

12vkcothvk

sinhvk
ImF2~Vjk!. ~65!

D. Discussion of the physical relevance of the perturbations

The class of perturbations listed above is a very la
one. Here we ~a! briefly discuss why some of the
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constantscsk anddsk , k50 and 1, can be set to 0 without
loss of generality and~b! mention special choices of the co
efficientscsk anddsk that correspond to some physically im
portant perturbations.

Let us consider the case when

iR̃@u#5 ic10ux2c21uxx2d01uuu2u. ~66!

It is well known that such types of additional terms do n
violate the integrability of the NLS equation. Indeed, af
the change of variables

j5
x1c10t

A112c21
, ~67a!

ũ~j,t !5A11d01u~x,t !, ~67b!

the NLS for u(x,t) with the right-hand side given by Eq
~66! will go into the standard NLS equation forũ in terms of
the variablesj and t. Therefore, from now on we shall sup
pose thatc105c215d0150. Of course this is possible only i
112c21.0 and 11d01.0. But since we assume that the
are perturbation terms, then these constants should be s
and the conditions should be satisfied.

In a slightly different way we can absorb the terms

i R̃̃@u#52c01u1 ic30~uxxx16uuu2ux!. ~68!

Indeed,R̃̃@u# can be viewed as the variational derivative
two of the integrals of motion of the NLS. Therefore addi
these terms to the right hand side of the NLS we will obt
one of the higher NLS-type equations with the dispers
law f̃ (l)522l21c0114c30l

3. It is well known that the
KS method can also be applied to any of the higher ana
of the NLS@11#. Of course this is possible only if the relatio
d1056c30 holds. If such a relation does not hold, we have
following options: ~a! consider (d1026c30)uuu2ux as a per-
turbation term to the nonlinear evolution equation~NLEE!
with dispersion f̃ (l)522l21c0014c30l

3, ~b! consider
(c302d10/6)uxxx as a perturbation term to the NLEE wit
dispersion f̃ (l)522l21c0012d10l

3/3, or ~c! consider
c30uxxx1d10uuu2ux as perturbation terms to the NLS wit
dispersion f̃ (l)522l21c00. Each of these approache
gives compatible systems of evolution equations for the s
ton parameters.

Without going into further details~see@4,6#!, we summa-
rize some of the physically important choices foriR@u# in
Table I. The papers in the second column are those in wh
the two-soliton interaction has been analyzed in the prese
of the corresponding perturbation by the Karpman-Solov
technique.

It also seems that perturbations with fourth-order deri
tives will hardly be needed, so we have limited ourselves
Eq. ~39!. Some typical cubic perturbations such as the n
linear gain have been analyzed for the two-soliton case
@36#.

As in the unperturbed case, the structure of the gene
ized perturbed KS system is determined by the one-
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two-soliton interactions. Indeed, the right-hand sides of
equations, describing the evolution of thekth soliton, are
obtained by adding~with the corresponding signs! two types
of terms:~i! the self-interacting terms, which are typical fo
the one-soliton perturbations~see, e.g.,@35,12,16#!, and ~ii !
the interaction terms, again are of the nearest-neighbor in
action ~NNI! type, that is, thekth soliton interacts with
k21 and k11 solitons, and the corresponding terms a
typical of the two-soliton interactions. Of course, the fir
and the last solitons in the chain have only one nearest ne
bor. In view of this we remark that~a! the perturbations
iR@u# that are linear inu contribute only to the self-
interacting terms;~b! the perturbationsiR@u# that are non-
linear inu influence both types of terms in the GKS; and~c!
as in the unperturbed case, the perturbed GKS system
highly nonlinear one and does not allow for a superposit
principle; thus the knowledge of the two-soliton interacti
cannot give us insight into theN-soliton dynamics with
N>3.

As we mentioned in Sec. II, the solitons interact ev
wheniR@u#50. Indeed, the approximation itself violates th
integrability and leads to nontrivial effective perturbativ
terms, see Eqs.~11! and~12!. Although exponentially small,
the presence of the NNI terms may lead to sizable effe
see how the relative spreadbN(t),

bN~ t !5
jN~ t !2j1~ t !

jN~0!2j1~0!
, ~69!

describing the divergence of the soliton train, falls off wi
the increase of the soliton number~see Fig. 1 and Table II!.

Let us consider a typical for the fiber optics perturbatio
the third-order dispersion~TOD!. Such perturbation is rel-
evant for at least two physical situations:~a! when the carrier
wavelength is near the zero-dispersion wavelength of the
ber and/or~b! when the pulse width is very short.

The effect of TOD on the interaction of solitons wit
equal amplitudes was investigated in@14,38#. It has been
proposed in@14# that the effect of TOD can be used to avo
the coalescence of two equal amplitude in-phase soliton

TABLE I. Physically important choices for the perturbations.

Nonvanishing Physical
constants phenomena

c00 linear loss and/or gain@15,17#
c00, c20 bandwidth limited

amplification@15–17,42,37#
c30 third-order dispersion@38,43#
d00 nonlinear loss

and/or gain@42,36,16,48#
d11 soliton self-frequency

shift @44,16#
d1053d20 self steepening@44#
R(3) sliding filters @45,16#
R(5) with f 05 f 152 ia/2, phase modulation@46,47,43#
a real
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FIG. 1. Dependence of the relative spre
bN(t) on the number of solitonsN in a train with
initially equal, equidistant, and out-of-phas
pulses. 2nk(0)51, mk(0)50, dk11(0)2dk(0)
5p, r (0)56, and t5126 ~lower curves! and
t5300 ~upper curves!. Solid lines, BPM; dashed
lines, CTC.
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has been shown that the interaction of two solitons w
equal amplitudes can be viewed as a break up of the co
sponding two-soliton bound state. Further, this break up
the two-soliton bound state has been succesfully descr
by the two-soliton Karpman-Solov’ev soliton perturbatio
theory @38#. Moreover, theN-soliton interaction of solitons
with equal amplitudes was also viewed as a breakup of
correspondingN-soliton bound state@38#. In the latter case
acquired velocities are such that the solitons cannot o
separate but also coalesce after some propagation dist
Therefore TOD does not suffice to stabilize a multisolit
train @37,38#. From the point of view of applications this i
an important conclusion.

Similar effects on theN-soliton interaction can be ex
pected also from intrapulse Raman scattering. Thus we h
derived the generalized KS system in the presence of ra

TABLE II. Dependence ofbN(t) for N out-of-phase solitons for
three different values oft, N51, . . . ,7 andr 056 and 8. The the-
oretical values are evaluated from formula~120!, the numerical are
from BPM.

t t548 t5126 t5300

N Num. Theor. num. theor. num. theor.
r 056

2 2.404 2.362 5.049 4.951 10.947 10.72
3 1.937 1.896 3.837 3.726 8.074 7.810
4 1.664 1.642 3.116 3.036 6.350 6.151
5 1.495 1.490 2.657 2.604 5.242 5.105
6 1.393 1.393 2.346 2.313 4.488 4.394
7 1.327 1.328 2.123 2.105 3.948 3.883

r 058

2 1.278 1.274 1.990 1.981 3.593 3.574
3 1.159 1.158 1.652 1.643 2.790 2.769
4 1.107 1.106 1.465 1.460 2.332 2.317
5 1.080 1.080 1.352 1.351 2.044 2.034
6 1.064 1.064 1.282 1.281 1.851 1.844
7 1.052 1.052 1.234 1.234 1.713 1.709
h
e-
f
ed

e

ly
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ve
er

general perturbation terms. The system itself forN.2 is
rather complicated, and cannot be solved analytically. H
we can repeat all our remarks from Sec. II B.

We see two important uses for the GKS. It can be used
numerical investigations of soliton interactions. An impo
tant question here is to describe the domain of initial con
tions, for which the perturbed GKS is applicable. Seco
after some additional approximations, this system can als
treated analytically. We show this in Sec. IV.

IV. SOLITON INTERACTIONS AND THE COMPLEX
TODA CHAIN

Here we shall introduce additional simplification of sy
tem ~35!–~38!, which allows us to derive some analytic
results about the asymptotic behavior of its solutions. T
first approximation to Eqs.~35!–~38!, considered in@31#,
consisted of the use of the average amplituden and the av-
erage velocitym ~instead ofnn andmn) in the exponentially
small termsSk,n andCk,n . This follows the original idea of
the Karpman-Solov’ev approach@12#. Even after that, how-
ever, system~35!–~38! remains unsolvable.

At the same time it was conjectured in@26,27# that the
standard real Toda chain~RTC! ~with N5`) may reason-
ably well describe the dynamics of the positions~in an infi-
nite train! of soliton pulses. Such a conjecture, however,
quires that the phase difference between the neighbo
solitons be constant. Looking at Eq.~38! and also at the
results of the numeric simulations we find that this is not
case.

Although its derivation is mathematically not consiste
~see@31#!, it has been established that at least for some ty
of initial conditions~equal and initially out of phase solito
pulses! the RTC gives a fairly good description of the pul
positions in comparison with direct solving of NLSE~1! by
the beam propagation method. This we explain by the f
that for small values oft the phase difference stays rath
close to constant. What happens next is that the soliton
sitions rather quickly tend to their asymptotic regime. In
the distances between the nearest neighbors increase e
nentially, and as result the termsSk,n andCk,n become so
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FIG. 2. Relative distances, velocities, amp
tudes, and phase differences evaluated for a tr
of four pulses with initially equal, equidistant
and out-of-phase pulses@2nk(0)51, mk(0)50,
and dk11(0)2dk(0)5p#. We plot the ratios
@jk(t)2 j̃k(t)#/jk(t), @nk(t)2 ñk(t)#/nk(t),
@mk(t)2m̃k(t)#/mk(t), and @dk(t)2 d̃k(t)#/dk(t)
wherek51,2 andj̃k , m̃k , ñk and d̃k are the so-
lutions for the CTC with four nodes, andj̃k ,
mk , nk , and dk are the solutions for the GKS
with N54. The solid lines correspond tok51,
and the dashed ones tok52. ~a! Relative dis-
tances@jk(t)2 j̃k(t)#/jk(t). ~b! Relative veloci-
ties @mk(t)2m̃k(t)#/mk(t). ~c! Relative ampli-
tudes @nk(t)2 ñk(t)#/nk(t). ~d! Relative phase
differences@dk(t)2 d̃k(t)#/dk(t).
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small, that the phase difference does not have any influe
The aim of this section is to propose another approxim

tion to system~35!–~38!, which will reduce it to the CTC
with N nodes. This we view as a natural generalization of
conjecture in@26,27#.

A. Derivation of the CTC

Let us make the following approximations to syste
~35!–~38!. First we changenn to n andmn to m in all terms
that containSkn andCkn . Indeed, bothSkn andCkn can be
estimated by uSknu<e, uCknu<e, where e5e22nr0 and
r 05(jk2jk11)u t50. The parametere determines the overlap
between the neighboring solitons, and up to now we h
been taking into account only terms of first order with r
spect toe. Then obviously, with the above approximation w
neglect terms likeun2nkue andum2mkue, which due to con-
dition ~10! will be of higher order.

Second, in Eqs.~37! and ~38! we neglect the termsSkn
andCkn as compare tomk , nk

2, andmk
2 . The numerical study

of the system forN52, 3, and 4 with initial conditions
r 058, f05p, mk(0)50, and nk(0)5

1
2 shows that
e.
-

e

e
-

u( j̃k2jk)/jku<0.03, i.e., smaller than 3%, wherej̃k is the
solution of the approximated equation, whilejk is the solu-
tion of the exact one. Analogical study of the phasesdk ,
velocitiesmk , and amplitudesnk show errors on the orde
less than 3%; see Fig. 2.

As a result the system of equations~35!–~38! goes into

dnk
dt

516n2~S̃k,k212S̃k11,k!, ~70!

dmk

dt
5216n2~C̃k,k212C̃k11,k!, ~71!

djk
dt

52mk , ~72!

ddk
dt

52~mk
21nk

2!, ~73!

where
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FIG. 2 ~Continued!.
lcu-

ter
C̃k,n5e2u2n~jk2jn!un cosf̃k,n , ~74!

S̃k,n5e2u2n~jk2jn!un sinsknf̃k,n , ~75!

f̃k,n5dk2dn22m~jk2jn!, ~76!

andsk,k2152sk,k1151.
Let us now introduce the function

Ek,n54n~C̃k,n2 iS̃k,n!

5exp~22nujk2jnu2 isk,nf̃k,n1 ln4n2!, ~77!

and the complex variables

lk5mk1 ink . ~78!

Then the first two equations in system~70! and ~71! can be
rewritten as

dlk

dt
54n~Ek11,k2Ek,k21!. ~79!
Let us now evaluate the derivativedEk,k21 /dt, using on the
way the above-mentioned approximations. After some ca
lations we obtain

dEk,k21

dt
524n~lk2lk21!Ek,k21 . ~80!

Analogously forEk11,k we have

dEk11,k

dt
524n~lk112lk!Ek11,k . ~81!

From these equations we conclude thatEk,k21 and Ek11,k
can be written in the form

Ek,k2152exp~qk2qk21!, ~82a!

Ek11,k52exp~qk112qk!, ~82b!

where the minus sign in front of the exponents is for la
convenience. The dynamical variablesqk satisfy the equa-
tions
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dqk11

dt
2
dqk
dt

524n~lk112lk!, ~83!

or, equivalently,

dqk
dt

524nlk . ~84!

If we now change the time variable fromt to t54nt and
assumepk52lk then system~70!–~73! acquires the form

dpk
dt

5eqk112qk2eqk2qk21, ~85!

dqk
dt

5pk , ~86!

which is equivalent to the complex Toda chain

d2qk
dt2

5eqk112qk2eqk2qk21. ~87!

Let us briefly discuss how the new variablespk andqk are
related to the old onesmk , nk , jk, anddk . Indeed, from the
old variables we immediately construct the new on
Slightly more involved are the expressions forqk and
qk112qk :

qk522njk1k ln4n22 i ~dk1d1kp22mjk!, ~88!

qk112qk522n~jk112jk!1 ln4n2

2 i †dk112dk1p22m~jk112jk!‡, ~89!

where we have put

d5
1

N (
k51

N

dk . ~90!

Then both expressions in Eq.~82! and ~84! will be compat-
ible up to terms of order (mk2m)2 and (nk2n)2, which
according to Eq.~10! should be neglected.

It is also possible to invert this transformation and, sta
ing from pk and qk , to reconstructmk , nk , jk , and dk .
Indeed, from the real and imaginary parts ofpk and from Eq.
~78! we immediately obtainmk andnk . Then from the real
part ofqk one findsjk . Finally, given the imaginary part o
qk , knowingmk andjk , we recoverdk .

B. Inverse scattering method for the complex Toda chain

Here we use the fact that the well known Lax pair@29# for
the standard Toda chain also holds for its complex vers
Below we shall follow the notations and the approach in
monograph of Ref.@2#.

The complex Toda chain can be written down as the co
patibility condition for the two systems

Fk11~t,l!5Uk~t,l!Fk~t,l!, ~91a!

Uk~t,l!5S pk~t!1l eqk~t!

2e2qk~t! 0 D , ~91b!
.

-

n.
e

-

dFk
dt

5Vk~t,l!Fk~t,l!, ~92a!

Vk~t,l!5S 0 2eqk~t!

e2qk21~t! l
D . ~92b!

It is easy to check that this condition reads

dUk

dt
5Vk11~t,l!Uk~t,l!2Uk~t,l!Vk~t,l! ~93!

and that Eq.~93! holds identically with respect to the spectr
parameterl provided thatqk andpk solve the complex Toda
chain system. In our case we have a Toda chain with fin
number of nodes, equal to the number of solitonsN. There-
fore the analog for the scattering matrix is

TN~t,l!5UN~t,l!UN21~t,l!•••U2~t,l!U1~t,l!

5S aN1~t,l! 2bN
2~t,l!

bN
1~t,l! aN

2~t,l!
D . ~94!

The t dependence ofTN(t,l) is determined by

dTN
dt

5VN11~t,l!TN~t,l!2TN~t,l!V1~t,l!. ~95!

Due to the fact thatE1,05EN11,N50, we have

VN11~t,l!5S 0 0

e2qN~t! l
D , ~96a!

V1~t,l!5S 0 e2q1~t!

0 l
D ~96b!

and, as a consequence, from Eq.~95! we find

daN
1

dt
50. ~97!

Therefore, the (1,1) matrix element ofaN
1(t,l) is the gen-

erating functional of the integrals of motion of the compl
Toda chain. From Eq.~94! we immediately find thataN

1 is a
polynomial of orderN with respect tol and therefore Eq.
~97! provides us withN complex integrals of motion. Ac-
cording to Liouville’s theorem these are enough for the in
grability of the CTC, provided they are in involution. Th
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fact will be proved in Sec. IV C. We will finish this sectio
by presenting the recurrent procedure of calculatingTN;11 as
functionals ofpk andqk .

Indeed, it is easy to find that

a0
151, ~98a!

a1
15p11l, ~98b!

a2
15~p11l!~p21l!2eq22q1. ~98c!

Let us analyze the expression fora2
1 . It gives us two

nontrivial integrals~the coefficients beforel1 andl0)

I 15p11p25 const, ~99a!

I 25p1p22eq22q15 const. ~99b!

The first of these is the analog of the momentum conse
tion; in KS notations it corresponds to the conservation
m and n. For N52 the second integral in Eq.~99!, I 2, is
related toL2 used by Karpman and Solov’ev through

L25I 1
224I 2 . ~100!

In addition a direct calculation allows us to conclude that
generic solutions of the KS and CTC withN52 are equiva-
lent.

The recurrent relation, which allows us to construct t
integrals of motion of the CTC for anyN, has the form

aN11
1 ~t,l!5~pN11~t!1l!aN

1~t,l!

2eqN11~t!2qN~t!aN21
1 ~t,l!. ~101!

C. Involutivity of the integrals of motion

Here we use the standard classicalr -matrix approach. Is
well known @2#, the Poisson brackets between the mat
elements of the Lax matrixUn(l) can be written down in the
compact form

$Un~l! ^

8
Um~m!%5@r ~l2m!,Un~l! ^Um~m!#dnm ,

~102!

wherer (l2m) is the canonical classicalr matrix given by

r ~l2m!5
P

l2m
, ~103a!

P5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D . ~103b!

On the left-hand side of Eq.~102! we have used the notatio
$X^

8
Y%,

$X^

8
Y% i j ,kl[$Xik ,Yjl %, ~104!
a-
f

e

e

x

which must be consistent with the definition of the tens
product: (X^Y) ik, j l5XikYjl .

It is a standard procedure to prove that from Eq.~102!
there immediately follows that the scattering matrixT(l)
satisfies~here and below we skip the indexN!

$T~l! ^

8
T~m!%5@r ~l2m!,T~l! ^T~m!#. ~105!

These are 16 equations for the 16 matrix elements of
direct products. We shall list only several of them:

$a1~l!,a1~m!%5$a2~l!,a2~m!%50, ~106a!

$b1~l!,b1~m!%5$b2~l!,b2~m!%50, ~106b!

$a1~l!,a2~m!%52
b1~l!b2~m!2b2~l!b1~m!

l2m
,

~106c!

$b1~l!,b2~m!%5
a1~m!a2~l!2a2~m!a1~l!

l2m
,

~106d!

$b1~l!,a6~m!%56
a6~l!b1~m!2b1~l!a6~m!

l2m
,

~106e!

$b2~l!,a6~m!%57
a6~l!b2~m!2b2~l!a6~m!

l2m
.

~106f!

In particular, from Eq.~106a!, we find thata1(l) and
a1(m) are in involution for arbitrary values of the spectr
parametersl andm. This immediately leads us to the con
clusion that their coefficientsI n ,

a1~l!5lN1 (
n51

N

I nl
N2n, ~107a!

$I k ,I n%50, ~107b!

must be in involution for all values ofk, n51, . . . ,N.
Therefore we see that the conditions of Liouville’s the

rem are fulfilled, and that the CTC is a completely integra
Hamiltonian system. In particular, from the recurrent re
tions ~101! we derive

I 1
~N!5(

i51

N

pi , ~108a!

I 2
~N!5(

i, j

N

pipj2 (
j51

N21

eqj112qj5
1

2
~ I 1

~N!!22HN ,

~108b!

where
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HN5
1

2(
j51

N

pj
21 (

j51

N21

eqj112qj . ~109!

In the real caseHN becomes the Hamiltonian of the RTC.

D. Reduction of the Toda chain

Consider the Toda chain~87! with N.2. Our goal now is
to reduce this system to an effective one forN52. Let us
write down equations for the differencesqk112qk :

d2~q22q1!

dt2
522eq22q1, ~110!

for the caseN52, and

d2~qk112qk!

dt2
5eqk122qk1122eqk112qk1eqk2qk21

~111!

for the caseN.2.
Now we require that all differences~111! be expressed by

only one effective differenceq2
eff2q1

eff in such a way that
each of Eqs.~111! goes into Eq.~110! for the effective vari-
ables. We find that this is fulfilled if

q̃k112q̃k5q2
eff2q1

eff1 lnbk , ~112a!

bk5k~N2k!, k51, . . . ,N21. ~112b!

Only in this section variables with a tilde refer to the reduc
system; they all are expressed in terms of justq2

eff2q1
eff . For

readers acquainted with the theory of simple Lie algebras
point out that the CTC~87! is related to the algebrasl(N),
while the one withN52 is related tosl(2). Therefore the
reduction to an effective two-node CTC described abo
would correspond to the principal embedding ofsl(2) into
sl(N). This is always possible, becausesl(2) has an
N-dimensional irreducible representation for anyN.

We introduce the quantitiesr (N) andc (N) by the equations

q̃k112q̃k522nS r ~N!2
1

2n
lnbkD1 ln4n2

2 i ~c~N!1p22mr ~N!!, ~113a!

r ~N!5j2
eff2j1

eff , ~113b!

c~N!5d2
eff2d1

eff . ~113c!

Thus all distances and phase differences are expre
through only two effective parametersr (N) andc (N), and the
N-node CTC is reduced to an effective two-node CTC
q2
eff2q1

eff .
Due to the reduction, theN integrals of motion will be

expressed as functions of onlyI 1
(N) and I 2

(N) , which in turn
are naturally related to the integrals of the correspond
effective CTC. In order to make comparison with@12# sim-
pler, we introduce
d

e

e

ed

r

g

L̃N
2[4SHN2

1

2N
~ I 1

~N!!2D5
N~N221!

6
~L̃2

~N!!2, ~114!

whereL̃2
(N) and L̃N are the Karpman-Solov’ev integral an

its generalization for theN-soliton reduced system.
Important cases in which the dynamics of theN-node

CTC is effectively related to the specific choice of initi
conditions~IC’s! are

pk~0!52~m1 in!, ~115a!

jk11~0!2jk~0!5r 0 , ~115b!

dk11~0!2dk~0!5d0 , ~115c!

where m, n, r 0, and d0 are k-independent constants. O
course, the integrals of motionI k

(N) are all expressed in term
of these IC’s. Imposing onLN these IC’s we find

LN
25~N21!L2

2 , ~116!

whereL2
2 is again the Karpman-Solov’ev integral.

Note that these two special cases are compatible only
N53. For N.3 the reduction requires tha
j̃k11(0)2 j̃k(0) depends onk; see Eq.~112!. Therefore
strict results using both the reduction and the special ini
conditions can be obtained only forN53. For N.3 such
considerations are approximate. We note that the maxi
values of ln(bk /bk21) are less than 10% forN<7 and
r 056, and about 7% forr 058.

Introducing, as in@12#, the notationsL25m21 in2 and
L̃2
(N)5m̃N1 i ñN and settingL̃N5LN from Eqs. ~114! and

~116!, we obtain

m̃N5S 6

N~N11! D
1/2

m2 , ~117a!

ñN5S 6

N~N11! D
1/2

n2 . ~117b!

Next we can apply the Karpman-Solov’ev’s analysis
these effective two-soliton systems and consider three dif
ent situations corresponding to the choice of the integ
L2. We formulate the results, which allow us to explain t
data in Fig. 1.

~i! Let mNÞ0. Then the interaction is repulsive. In ord
to explain the data in Fig. 1 we consider only the asympto
of the solutionR(N)(t)5 j̃N(t)2 j̃1(t). Using the results in
@12# we find that, fort→6`,

RN~ t !.62S 6~N21!2

N~N11! D
1/2

m2t1
N21

2n
ln

4n2

m2
21n2

2

1
N21

2n
ln
N~N11!

6
2

1

2n
ln@~N21!! #2.

~118!

The last two summands balance each other to a high de
whenN.3 because 6/N(N21) is actually the mean value
of all bk , and forN53 they cancel each other. From E



1

e
y

f
ng
t

in
ls

io

l
io

a
de

d

tion

ese
ary

e

h a
r

that

TC
the
n-

s,
n-
ts;

the
otic
the
ing
o

ed
r-

a
e

e-
do

m
nts
o-
er-
e-
n

m-
-

55 6053NONLINEAR SCHRÖDINGER EQUATION AND N- . . .
~118! we can evaluatebN(t)5RN(t)/RN(0) for large values
of t. In particular, forb2 andb3, we obtain

b2~ t !.
2m2t1

1

2n
ln

4n2

m2
21n2

2

R2~0!
, ~119a!

b3~ t !.

A2m2t1
1

2n
ln

4n2

m2
21n2

2

R2~0!
. ~119b!

Consequentlyb3,b2, and the numerical results on Fig.
are described very well.

The time dependence ofbN can also be derived in th
generic case; see@39#. For example, if the IC is provided b
Eq. ~115! we find @39#

bN~ t !.
16ne2nr0

~N21!r 0
cos

p

N11
sin

d0
2
t11

2
1

~N21!nr 0
ln~2N21gN!,

gN5 )
k51

N21

~cosu j2cosuN!, ~120!

g151,

uk5
kp

N11
.

These formulas are compatible with the BPM ford0.p. The
interval of validity grows withr 0. In general the range o
validity of these formulas is related to the problem of findi
the class of initial conditions, for which CTC is an adequa
approximation; see also Sec. IV F below.

~ii ! Let nowmN50, nNÞ0. Then in theN-soliton case
we may have also a periodic solution; see formulas~3.31!–
~3.35! in @12#. For equal amplitudes the parametera1 in this
formula vanishes and the solution becomes singular. Us
the reduction we find, that such singularity takes place a
for the three-soliton case with equal amplitudes andd050.

For the three-soliton case we also find explicit express
for the period

T35
p

2nuñ3u
5

A2p

2nuñ2u
5A2T2 , ~121!

i.e., the period lengthens with the growth ofN.
~iii ! If mN50, nN50, andN53 then there is no essentia

difference from the two-soliton case due to the reduct
described above.

E. CTC versus RTC

We already mentioned above that soliton interaction in
infinitely long soliton chain has been conjectured to be
scribed by the infinite real Toda chain@27,26#. In these pa-
pers only the soliton positionsjk are taken into account an
e

g
o

n

n

n
-

in addition it was assumed that the phase differencesf0;kn
remain constant in time. As we can see, this last assump
is not compatible with the system~35!–~38! derived above.

Let us now briefly discuss the relations between th
facts and the CTC. If we introduce the real and the imagin
parts ofqk by qk5Pk1 iCk then the CTC will be rewritten
as a system of 2N equations for the 2N real variablesPk and
Ck . If we now impose the conditionCk112Ck5C
5const, we then obtain

d2Pk

dt2
5cosC~ePk112Pk2ePk2Pk21!, ~122!

d2Ck

dt2
5sinC~ePk112Pk2ePk2Pk21!. ~123!

This system is consistent only provided sinC50, i.e.,
C50 orp, as has been chosen in@31#. These two cases ar
substantially different. Indeed, forC5p we obtain the RTC
in its standard form, solved by@29#. In fact we used this
solution in deriving Eq.~120!. ForC50 we obtain a differ-
ent, and much less studied, version of the RTC, one wit
‘‘wrong’’ sign on the right-hand side, which has singula
solutions; we will call it the singular RTC~SRTC!. This
reflects the fact that the CTC has a class of solutions
become singular for finite values oft; such singularity exists
also forN52; see~ii ! in Sec. IV D above.

Recently it was also checked numerically that the SR
gives an adequate description of the soliton positions for
case when we have a train of three solitons with initial co
ditions: nk5

1
2, mk50, r 058, andd050 or p; see@31# for

values oft up to about 50. Our more recent check show
that SRTC gives a fairly good description of the soliton i
teractions excluding the neighborhood of its singular poin
see Fig. 4 below.

Another important difference between the RTC and
CTC is that the CTC has a much larger class of asympt
states than the RTC. The only possible asymptotics of
RTC can be described as ‘‘free solitons,’’ each one mov
with its own velocity@29#. At the same time the CTC als
possesses asymptotic states, where some~or all! of the soli-
tons form bound states; see, e.g., Figs. 3~d!–3~g!.

The CTC is derived in a natural way from the generaliz
KS equations. We view theN-node CTC as a natural gene
alization of the results of theN-node RTC@31#. The generic
N-soliton solution of the NLS equation can be viewed as
dynamical system with 2N degrees of freedom. The sam
holds true also for the GKS and for a CTC withN nodes.
From this point of view the CTC is more adequate for d
scribing the soliton interactions, and may be expected to
so for wider a class of IC’s than the RTC.

Formally the solutions of the CTC can be obtained fro
those of the RTC by making the corresponding coefficie
complex. As a result we may expect a richer variety of s
lutions and asymptotic behaviors. From general consid
ations it follows that the asymptotics of the RTC are d
scribed by ‘‘free’’ solitons, each one moving with its ow
asymptotic velocitym̂k , such thatm̂kÞm̂n for kÞn. In the
case of the CTC the asymptotic is described by the ‘‘co
plex velocities’’ m̂k1 i n̂k , wherem̂k characterizes the veloc
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FIG. 3. Comparison between the CTC and BPM for other initial conditions.~a! The positions of a two-soliton interaction with initial sta
mk(0)50; nk(0)5

1
2; r 058; k51 and 2; andd2(0)2d1(0)520.05p. Solid line, BPM, dashed line, CTC.~b! The positions of a three-

soliton interaction with initial statemk(0)50; nk(0)5
1
2; r 058; k51, 2, and 3;d1(0)5d3(0)50; andd2(0)520.05p. Solid line, BPM;

dashed line, CTC. ~c! The positions of a four-soliton interaction with initial statesmk(0)50, n1(0)5n3(0)50.95/2,
n2(0)5n4(0)51.05/2,r 058, anddk(0)50. k51, 2, 3, and 4. Solid line, BPM; dashed line CTC.~d! The positions of a three-soliton
interaction with initial statesmk(0)50, n1(0)50.95/2,n2(0)5

1
2, n3(0)51.05/2,r 058, d1(0)5d3(0)50, andd2(0)5p/2. k51, 2, and

3. Solid line, BPM; dashed line CTC.~e! The velocities of a three-soliton interaction with initial statesmk(0)50, n1(0)50.95/2,
n2(0)5

1
2, n3(0)51.05/2,r 058, d1(0)5d3(0)50, andd2(0)5p/2. k51, 2, and 3; CTC.~f! The velocities of a three-soliton interactio

with initial statesmk(0)50, n1(0)50.95/2,n2(0)51/2, n3(0)51.05/2,r 058, d1(0)5d3(0)50, andd2(0)5p/2. k51, 2, and 3; BPM.
~g! The amplitudes of a three-soliton interaction with initial statesmk(0)50, n1(0)50.95/2, n2(0)51/2, n3(0)51.05/2, r 058,
d1(0)5d3(0)50, andd2(0)5p/2. k51, 2, and 3; BPM.
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ity and n̂k the amplitude of thekth soliton. Again we may
havem̂k1 i n̂kÞm̂n1 i n̂n for kÞn, but now this does not nec
essarily mean thatm̂kÞm̂n . This explains why the asymp
totics of the solutions of the CTC are richer than those of
RTC. In particular, it is known that the CTC has singu
solutions that ‘‘blow up’’ for finite values oft; see@32#. We
show examples of such solutions forN52 and on Figs. 4;
note that these solutions are both singular and periodic.

In addition, we see that the asymptotics of the CTC m
include bound states of two~or more! solitons which stay
equidistant with a very good precision; their velociti
slightly oscillate around a common average value, see F
3~e!–3~g! below. Of course this is possible only for soliton
with different amplitudes.

This is also consistent with what is already known fro
the exact results for two-soliton interactions. ForN52 the
CTC is equivalent to the KS system whose analytic solut
was obtained in@12#. These results show that for certa
e

y

s.

n

choices of the initial conditions we find periodic and singu
solutions.

F. GKS and CTC: Domain of validity

An important problem in this context is to describe mo
precisely the domain of validity of both the CTC and GK
models. In order to show that this domain is larger than
small neighborhood of the initial conditions~115! we present
several examples, illustrating that CTC may fairly well d
scribe the soliton interactions under a large variety of IC
An analysis of the GKS has been performed in@34#, where it
was shown that the GKS reasonably describes the interac
of large sequences of unequal soliton pulses. A compar
between the GKS and the CTC was given above in S
IV A.

In all cases below we choose the solitons to be equidis
with r 056 and 8 and with vanishing initial velocities. Fo
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brevity and clarity let us introduce the following notation
for the sets of initial amplitudes and phases:

A0
~N![$2nk~0!51.0,k51, . . . ,N%,

A1
~2![$2n1~0!50.95,2n2~0!51.0%,

A2
~2![$2n1~0!51.0,2n2~0!51.05%,

A1
~3![$2n1~0!50.95,2n2~0!51.0,2n3~0!51.05%,

A2
~4![$2n1~0!52n3~0!50.95,2n2~0!52n4~0!51.05%,

D0
~N![$dk11~0!2dk~0!50,k51, . . . ,N21%,

D1
~N![$dk11~0!2dk~0!5p,k51, . . . ,N21%,

D2
~2![$d1~0!50,d2~0!520.05p%,

D2
~3![$d1~0!50,d2~0!520.05p,d3~0!50%,

D3
~3![$d1~0!50,d2~0!5p/2,d3~0!5p%,

D4
~3![$d1~0!50,d2~0!5p/2,d3~0!50%,
D3
~2![$d1~0!50,d2~0!5p/2%,

D4
~2![$d1~0!5p/2,d2~0!50%.

In Figs. 3~a! and 3~b!, we see very good quantitativ
agreement between the CTC and the BPM for two- a
three-soliton interactions, with IC’s given byA0

(2) ,D2
(2) and

A0
(3) ,D2

(3) , respectively. Here and below we assumer 058
and mk(0)50. The choice of this initial phase differenc
avoids the singularity of the corresponding CTC solution

On Fig. 3~c! we show four solitons withA2
(4) ,D0

(4) like in
@23#; we again find a good agreement with the BPM f
values oft up to 120 and above 170.

Very interesting is the situation depicted in Fig. 3~d!,
where we consider three solitons withA1

(3) ,D4
(3) . Here we

find that two of the solitons form an asymptotic bound sta
while the third one separates off. This is confirmed also
Figs. 3~e! and 3~f!, where we show the velocities of the sol
tons evaluated with the CTC@Fig. 3~e!# and BPM@Fig. 3~f!#,
respectively. Here CTC gives a good agreement with
BPM, which also extends to the description of the solit
amplitudes; see Fig. 3~g!.

This example also illustrates the fact that a knowledge
only two-soliton interactions cannot be sufficient for descr
tions of the three- andN-soliton ones. Indeed, we know tha
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FIG. 4. Singular solutions of the CTC fo
N52 and 3, and a comparison with BPM.~a!
The positions of a two-soliton interaction wit
n1(0)5n2(0)5

1
2, m1(0)5m2(0)50, d1(0)

2d2(0)50, and r 058. Solid lines, BPM;
dashed lines, CTC.~b! The positions of a three-
soliton interaction with nk(0)5

1
2; mk(0)50,

dk(0)50, k51, 2, and 3; andr 058. Solid lines,
BPM; dashed lines, CTC.
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two solitons can form a bound state only if their initial v
locities are equal, the phase difference is equal to zero
the amplitudes are different; for example,A1

(2) ,D0
(2) .

At the same time, in the case of Figs. 3~d!–3~g!, the first
and second solitons are characterized byA1

(2) ,D3
(2) and the

second and the third solitons byA2
(2) ,D4

(2) . Both these con-
figurations in the two-soliton case lead to a repulsive int
action, so if we apply the two-soliton intuition for the thre
soliton case, we should expect that the three solitons sep
off. However, what we see in Figs. 3~d!–3~g! is qualitatively
different, and can be predicted in no case by the two-sol
solution.

In Figs. 4~a! and 4~b! we show the two- and three-solito
interaction with A0

(2) ,D0
(2) and A0

(3) ,D0
(3) , respectively.

Again we see that the CTC qualitatively describes the sol
interactions very well, with the exception of the regio
where the singularities occur. Another similar example
three-soliton interactions can be seen in Fig. 4~b!. We see
that the corresponding BPM solutions also tend to show
periodic behavior, and that the periods of both solutions
roughly the same. Finally, the ratio of the periods forN52
and 3 are related through formula~121!.

Up to here we analyzed the soliton interactions of the p
nd

-

ate

n

n

r

a
re

e

NLS with a vanishing right-hand side. Applying the sam
kind of approximations to the perturbed versions of the s
tem ~35!–~38!, i.e., with iR@u#Þ0, we obtain perturbed ver
sions of the CTC.

However, in doing this consistently, one may meet dif
culties. First of all, note that in bothNk

(p) and Mk
(p) one

obtains additional self-interacting terms, and now one sho
perform a balance between them and the already presen
ponentially small termsSk,n andCk,n . If the latter are the
dominating terms, due, say to the fact thatNk

(p) andMk
(p) are

either 0 or are multiplied by a small constant, then we inde
obtain a perturbed version of the CTC. If, however, the p
turbative termsNk

(p) andMk
(p) , p.0 happen to be the lead

ing ones, then no CTC may result; this situation must
considered separately.

Another case, to be considered separately is the cas
solitons with unequal amplitudes. The derivation of the CT
in this case, strictly speaking, should be done separat
Indeed, if there is a substantial difference betweennk and
nk61 we cannot replacenn in the arguments for the expo
nents exp(2ubk,k21u) and exp(2ubk,k11u) by the average am
plitude n. Then generically exp(2ubk,k21u) and
exp(2ubk,k11u) will be of different orders of magnitude
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There is, however, a particular situation, name
n15n35••• andn25n45•••, when both terms on the righ
hand side of Eqs.~35! and~36! will be of the same order o
magnitude, which, however, will be different for odd an
even values ofk. It is known that soliton trains of four in-
phase unequal amplitude solitons demonstrate stable pr
gation @23,34#; see also Fig. 3~c!.

Finally, let us briefly discuss the cases when the syste
derived above fail to describe the soliton interaction.
course, this may happen when the initial approximations~10!
are destroyed by the evolution. After that neither the CT
GKS, nor system~35!–~38! can be expected to work.

As an example of such a situation we point out the cas
soliton collisions. It is well known that in the case o
A0
(N) ,D0

(N), N52 and 3, they attract each other, and as
result the distance between them diminishes and approx
tions ~10! may fail. Somewhat unexpectedly we find that t
CTC describes very well the soliton positions even for su
IC’s, failing to do so only in comparatively small region
around its singular points; see Fig. 4.

Let us briefly comment on the effects of perturbations
GKS and CTC. Of course this is an open field which requi
more than one paragraph or paper to be covered.

Some of the perturbations~e.g., the bandwidth-limited
amplification and nonlinear gain! do not violate the symme
try of the soliton train. Others~such as third-order disper
sion! act in an unsymmetrical way on the each of the puls
As a result the amplitudes of the pulses change substant
due to the perturbation and violate the initial approximatio
The applicability of the Karpman-Solov’ev approach for t
two-soliton case is investigated in detail in@38#.

Other perturbations~such as TOD! may lead to substantia
radiation, and thus the adiabatic approximation becomes
valid. Therefore, such processes cannot be investigated
the method proposed above. An analytical approach to
study of the effects of radiation was proposed recently
@40#. These problems are out of the scope of the pres
work.

In some cases~e.g., for bandwidth-limited amplification
and nonlinear gain! the perturbed NLSE acquires the form
the Ginzburg-Landau equation. Then even for comparativ
small values of the perturbation coefficients the NLS soli
pulses due to the interaction may transform into the ex
solutions of the Ginzburg-Landau equation@36#. They differ
from the soliton pulses by their amplitudes, widths, and m
importantly, by their chirp. Their interaction should be d
scribed by other methods@21,36#.

Although the list of these situations can probably be
tended, we would like to stress again, that there defini
exist a manifold of initial data for the solitonlike pulses, f
which system~35!–~38! and~or! the CTC give a proper and
adequate description. It is known, that the asymptotics of
solutions of the standard RTC are given by the free mot
of the particles@29#, in our case solitons. Its generalizatio
the CTC, possesses a much richer variety of asymptotic
haviors, see Figs. 3 and 4. What would be ideal for the
tical communications lines using solitons would be
achieve a stable propagation of soliton trains in which
solitons have nearly the same asymptotic velocities. Th
fore, we believe that further studies of the CTC may help
shed more light on this problem.
,
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V. CONCLUSIONS

We have generalized the Karpman-Solov’ev approach
an arbitrary number ofN.2 interacting solitons. We have
been also able to account for a large class of physically
portant perturbations. As a result we obtain a dynamical s
tem of 4N equations describing the evolution of the solito
parameters under these perturbations.

As it should be expected, the right hand sides of the
namical system of equations for the soliton parameters c
tain complicated nonlinear nearest-neighbor interact
terms. This system does not allow the superposition p
ciple, so that theN-soliton interaction can not be reduced
separately interacting soliton pairs.

We have also proved that the dynamics of the train
N-soliton-like equidistant pulses with~nearly! equal ampli-
tudes and velocities and moving according to the unp
turbed NLS equation after some simplification reduces to
N-node complex Toda chain. If we choose the phase dif
ences between the neighboring solitons to bep, we derive
the RTC for their positions, which was analyzed earlier
@31#.

It is possible also for some types of perturbationsiR@u# to
derive the corresponding perturbed versions of the CT
This fact can be used for describing the class of initial co
ditions under which the propagation of solitons will b
stable, and compare them with the already known sta
combinations, see@22,23#.

Other important question outlined above are as follow
~a! To describe the class of initial data, for which the CT
adequately describes the soliton interactions. The exam
given above show that it is larger than just a small reg
around the initial conditions~115! with d0.p. ~b! To use
the explicit solutions of the CTC and their large-t asymptot-
ics for a description of the behavior of the soliton train
Work in these directions is under progress; see@39#.
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APPENDIX A

Here we briefly describe the evaluation of the differe
types of integrals that appear in the calculations, and m
specifically their asymptotic behavior fora,b→0 and
b@1. The simplest types of integrals that appear have
form

Jp~a!5E
2`

` dz eiaz

2 coshpz
, ~A1a!
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Jp~a!5E
2`

` dz eiazsinhz

2 coshpz
. ~A1b!

Using integration by parts, these integrals can be expre
by J1(a) and J2(a), which in turn are known from the
tables of integrals@41#. We have

Jp~a!5
a21~p22!2

~p21!~p22!
Jp22~a!, ~A2a!

Jp~a!5
ia

p21
Jp21~a! ~A2b!

and

J1~a!5
p

2cosh
ap

2

, ~A3a!

J2~a!5
pa

2sinh
ap

2

. ~A3b!

ObviouslyJp(a) are even functions ofa, while Jp8(a) are
odd functions ofa. In addition,Jp(a) are Schwartz-type
functions ofa on the whole axis. In particular,

J2s11~0!5
~2s21!!!

~2s!!!

p

2
, ~A4a!

J2s~0!5
~2s22!!!

~2s21!!!
, ~A4b!

and their first-order derivatives with respect toa vanish for
a→0.

Let us now analyze the integralsPp(a,b,b) and
Qp(a,b,b). We do not know exact explicit expressions f
them in terms ofa, b, andb. However from Eqs.~22! and
~23! one concludes that they are Schwartz-type functions
their parameters in the stripuImau,p111b. In our consid-
eration we assumep.1 and uImau!1, b!1, so a and
a65a6 ib are always inside the above-mentioned strip
the complex plane. This fact allows us to assume that
derivatives of all orders of our functions will be smooth a
bounded.

In the case whenubu@1, we obtain

eiaz

cosh@~11b!z1b#
.2eia6ze2ubu~coshz2sbsinhz!

3@11O~e22ubu!#, ~A5!

wheresb5 sgnb. After simple calculations using Eq.~A2!,
we obtain

Pp~a,b,b!.4e2ubuS 12
isba6

p21 DJp21~a6!

3@11O~e22ubu!#, ~A6!
ed

f

f
e

Qp~a,b,b!.
4e2ubu

~p21!~p22!
Ap~a6 ,b!Jp22~a6!

3@11O~e22ubu!#, ~A7!

Ap~a6 ,b!5sba6
2 1 i ~p21!a62sb~p22!. ~A8!

From these formulas we can easily also evaluate the beha
of the integrals

Rp~a,b,b!5E
2`

` dz eiazz

coshpz cosh@~11b!z1b#

5
1

i

d

da
Pp~a,b,b!, ~A9!

Sp~a,b,b!5E
2`

` dz eiazzsinhz

coshpz cosh@~11b!z1b#

5
1

i

d

da
Qp~a,b,b!, ~A10!

which appear in evaluatingJk
(0)@u# and Dk

(0)@u#. Further,
when evaluatingJk

(p)@u# and Dk
(p)@u# with s>1, we also

encounter integrals of the types

Up,2~a,b,b!5E
2`

` dz eiazsinh@~11b!z1b#

coshpz cosh2@~11b!z1b#
,

~A11!

Wp,2~a,b,b!55E
2`

` dz eiazsinhz sinh@~11b!z1b#

coshpz cosh2@~11b!z1b#
,

~A12!

which, after integration by parts are expressed throughPp
andQp ,

Up,2~a,b,b!5
nk
nn

@ iaPp~a,b,b!2pQp11~a,b,b!#,

~A13!

Wp,2~a,b,b!5
nk
nn

@ iaQp~a,b,b!2~p21!Pp21~a,b,b!

1pPp11~a,b,b!#. ~A14!

These formulas are enough to evaluate the necessary ex
sions for the coefficientsNk

(p)@u#, . . . ,Dk
(p)@u#.

APPENDIX B

Let us show now in more detail what kind of approxim
tions we perform in deriving the generalized Karpma
Solov’ev system and the CTC. First we shall explain why t
terms R̃k

(0)@u# in Eq. ~12! can really be neglected. Indee
inserting the termukum* un into the right-hand sides of Eqs
~15!–~18! we obtain integrands with denominators of th
type
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1

coshpzkcoshzmcoshzn

.e2ubknu2ubkmu~coshzk2sknsinhzk!~coshzk2skmsinhzk!

coshpzk

3@11O~e22ubknu!1O~e22ubkmu!#

.O~e22ubkmu!, ~B1!

where we have made use of Eq.~A5!. Evaluated att50 the
right-hand side of Eq.~B1! for the casen5k11 and
m5k21 has an ordere2, which means that they can b
neglected. The other possible cases, whenuk2mu.1 or
uk2nu.1, lead to estimations of still higher order ine.

Let us now briefly go into some detail about the deriv
tion of the CTC, particularly about to the connection b
tween the old variablesnk , mk , jk , anddk and the new ones
qk andpk . We will evaluate the derivative ofqk . We start
with the derivative ofd:

dd

dt
5

d

dt S 1N(
p51

N

dpD
I.
rm

h

i-

. A
-
-

52m212n21
2

N (
p51

N

@~m2mp!
21~n2np!

2#

.2m212n2, ~B2!

where we have neglected terms of the order (m2mp)
2 and

(n2np)
2.

Now we evaluate the derivative ofqk using Eq.~B2!:

dqk
dt

5
d

dt
@22njk1k ln4n22 i ~dk1d1kp22mjk!#

524nmk2 i ~2mk
212nk

212m212n224mmk!

524nmk24innk22i @~m2mk!
21~n2nk!

2#

.24n~mk1 ink!524nk . ~B3!

If we now use the variablespk andt, we conclude that

dqk
dt

5pk . ~B4!
-

n.

a,

s,

s

cs:

.

-
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