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A method for the description of thid-soliton interaction, which generalizes in a natural way the Karpman-
Solov'ev one for the nonlinear Schtimger (NLS) equation, is proposed. Using it, we derive a nonlinear
system of equations describing the dynamics of the parametétsaafll separated solitons with nearly equal
amplitudes and velocities. Next we study an exhaustive list of perturbations, relevant for nonlinear optics,
which include linear and nonlinear dispersive and dissipative terms, effects of sliding filters, amplitude and
phase modulation, etc. We prove that the linear perturbations affect each of the solitons separately, while the
nonlinear ones also lead to additional interactive terms between neighboring solitons. Under certain approxi-
mations we show that thid-soliton interaction for the unperturbed NLS equation is described by the complex
Toda chain(CTC) with N nodes, which is a completely integrable dynamical system withdggrees of
freedom. A comparison made by numeric simulation shows that CTC gives an adequate description for the
soliton interactions for a number of choices of the initial conditig®4.063-651X%97)03104-9

PACS numbg(s): 42.65-k, 42.81.Dp, 42.65.Tg

I. INTRODUCTION To solve such type of problems one may use one of four
methods. The first is an analytical approach based on the
As is well known, the nonlinear Schiimger equation inverse scattering method1,2] and expansions over
(NLSE) serves as a basic physical model with applications ir‘squared” solutions of the Zakharov-Shabat systEsr11]
guantum mechanics, hydrodynamics, plasma physics, noi-. It allows one to relate the variations of the soliton param-
linear optics, etc. The NLSE can be integrated by using thetersn, andC, to integrals of the form
inverse scattering methdd]. This allows for an exhaustive
study of its properties as an infinite dimensional completely o . N
integrable Hamiltonian system. Moreover, the interaction of AN =Cy medXtr{AQ[U],‘I’ (XN (29
the solitons of the NLSE in the generic case, when all soli-
tons have different velocities is well knowt,2]. However,

+ 2
the cases when two or several solitons move with the same T (XN = 0 —[f (x,N)] @b
velocity [3], or when the perturbed NLSE ’ [f5(X,\)]? 0 ’
iug+ %uxx+|u|2u(x,t)=iR[u] D 0 R[u]
AQ[u =( ) (20
is considered, still contain open problerfidere we used the Lu] R*[u] 0

normalized dimensionless variablgsandt; the same also
holds true for the soliton parameters, plotted in the figuresvhereR[u] is the perturbation on the right-hand side of Eq.
below) At the same time such soliton trains moving in real (1) and f;(x,\,) and fz(x \y) are the components of the

media are of great interest for a number of different physicaljost solutiorf (x, )\k) (fl) of L, corresponding to the eigen-

applications. Typical examples of such applications are opt|
cal soliton transmission lindg—6] and nonlinear fiber lasers

[5]. For other physical applications, sg&.

alue)\k Somewhat more complicated are the expressions
for AC, : the variations of the “normalization” constants
of f(x,\,). They have the same structure as E).but also
include the derivatives
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Analogous formulas also exist for variations of the scatteringposed by Anderson and co-workdrs8,19. It is based on
data on the continuous spectrum lof In what follows we the Lagrangian formulation of the corresponding perturbed
will neglect, following[12], the influence of the continuous NLSE. To use it, one needs an ansatz for the pulse solution,
spectrum. This approach, known as the adiabatic approximahus fixing up the parametrization of the pulse. Then, insert-
tion, is applicable for generic perturbation. ing it into the Lagrangian one is able to derive a set of dy-
However, the corresponding formulas beyomM=1  namical equations for the evolution of the parameters. This
quickly become so involved that one is not able to analyzenethod is more flexible than the KS approach in the sense
them. Another problem arises from the necessity of detery i 4 larger class of initial pulsés.g., chirped solitonf20])
mining th_e exact scattering data, corresponding to an initial 5 pe considered. On the other hand, it is limited by the
pulse train of the form requirement that the perturbed NLSE has to be Hamiltonian,
N which is not necessary for the KS method. A method pro-
ux,0= —e——m ———. (3)  posed by Malome{i21] combines ideas from the second and
k=1 COSh2(X—Xox) third approaches. There the author derived and investigated
the properties of the effective interaction Hamiltonian de-
chibing the two-soliton interactions of the perturbed NLSE
f::\nd its generalization, the Ginzburg-Landau equation.
Note that practically all results obtained by the above-
mentioned three analytical approaches concern the two-

obtained. Applying numerical methods in such an approachSOI,iton intgrgction. Meanwhile it was shown that a _soliton
requires a multiple execution of the following procedures.rain consisting ol interacting solitons may be considered
First, starting from the initial conditiof8), one has to deter- a0 interesting type of dynamical system with its own pecu-
mine the corresponding scattering da@;(, A\, and the liarities [14,_22—25. _Obv!ously theN—sollton_ interaction is
possible presence of radiationand squared solutions r_epresentauve_of situations encpunter.ed in communication
@ (x,\) which enter into Eq.(2). Next, calculating the lines. The main tool for analyzing this problem was the
right-hand sides of Eq(2), one obtains the evolution of the fourth approach, based on direct numerical solving of the
scattering data, and then one needs to determine the shapeNJ¢SE by the beam propagation method; for a review, see
the pulse, corresponding to the data obtained. This coultf]. Moreover, the numerical solution of the NLSE is the
possibly be simplified and used effectively in cases when th&ain test in analyzing the applicability of the analytical tech-
distances between the pulses are large and the number Bijues mentioned above.
solitons is comparatively low; s¢&5,16]. Our aim in the present paper consists of generalizing the
The second approach was initiated by the pioneering pakS method to the case & well separated interacting soli-
per by Karpman and Solov'eM 2]; it is also known as the tons with nearly or exactly equal amplitudes and velocities.
quasiparticle approach. It is based on the adiabatic approxIh Sec. Il we derive the generalization of the KS system for
mation mentioned above. Its main idea is to view the intertheN-soliton solution of the NLSE without perturbation. We
action as a slow deformation of the soliton parameters ifProve, as was conjectured(iz6,27, that the interaction is of
which only the nearest-neighbor interaction should be takethe nearest-neighbor type.
into account. With it, one is able to study the interaction of In Sec. Il we explicitly obtain the effect of three different
soliton trains for some restricted class of initial conditions,classes of perturbations to the generalized KS system. We
that is, (a) the solitons have nearly or exactly equal ampli-prove that perturbations linear im lead only to self-
tudes and velocities an@) the separation between them is interaction terms for each of the solitons separately. The per-
large as compared to their widfmore precisely these con- turbations cubic inu give rise not only to self-interaction
ditions will be stated in Sec. | belowUnder these approxi- terms, but also influence the interaction terms between the
mations theN-soliton solution of the NLSE and the corre- neighboring solitons. In Sec. Ill C, we analyze the driving
sponding squared solutions of the Zakharov-Shabat systefarce case and two perturbations linearunwhose coeffi-
are very well approximated by linear combinations of theircients depend explicitly ox; they also lead only to self-
one-soliton counterparts, and so one is able to derive a dyhnteractive terms.
namical system of equations for the soliton parameters. This In Sec. IV we find that, under certain approximations, the
was performed effectively ifl2] for N=2 solitons, where, N-soliton interaction for the unperturbed NLS equation is
moreover, the corresponding dynamical system was solvedescribed by the complex Toda chd@TC) with N nodes.
explicitly. Later this approach was used in a number of pa-The genericN-soliton solution, as well as the generalized
pers for analyzing the two-soliton interactions in the pres-Karpman-Solov’ev systeffGKS) and the CTC wittN nodes
ence of various perturbations, both Hamiltonian and dissipaare dynamical systems withN2 degrees of freedom. The
tive ones; for a review, sept,6]. Although the region of CTC is obtained from the well known real Toda chéRTC)
soliton parameters to which the Karpman-Solov'&sS) [28,29 by a complex extension of its dynamical variables.
method is applicable is comparatively small, it represents &lumerical studies show that the RTC describes very well the
substantial physical interest, since a great part of the experpositions and velocities dfl interacting equidistant and out-
mentally studied solitonlike pulses in nonlinear fiber opticsof-phase solitons witiinearly equal amplitude$31]. The
satisfy these conditions. RTC cannot provide a description of the amplitudes and
The third approach that can be used for analyzing thephase differences, which are assumed to be constants. CTC
soliton interactions is the so-called variational approach proand GKS take into account allNt soliton parameters, and

2 Vkei bok

This method has also been used for numerical simulations i
several paper$13—17, where mostly two-soliton interac-
tions have been studied. With the growth of the number o
pulses the difficulties of such investigations grow enor-
mously (see[14], where some results fdi=3 have been
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one may expect that they will have wider applicability, e.g., There are many ways to derive the reflectionless poten-

they could be used not only for out-of-phase solitons. tials of L and its corresponding eigenfunctions; this immedi-
It is well known that the standard RTC with real-valued ately produces the soliton solutions of the NLS equation. In

dynamical variables is a completely integrable Hamiltonianwhat follows below we shall need a convenient parametriza-

system[28,29. Some of these results for the RTC can betion for the one soliton solution and the corresponding eigen-

generalized for the CTC in a quite straightforward way. Thisfunction ofL:

is so for the Lax representation and the classicatatrix

method(see[2]). Using them, we show that the CTC pos- 2pel?
sessesN complex-valued(or 2N real-valued integrals of Uiz = oo (7a)
motion in involution, and hence is also completely inte-
grable.
Formally the solutions of the CTC can be obtained from z=2v[x—&(1)], (7b)

the ones of the RTC by taking the parameters to be complex.

This means that the class of solutions of the CTC is larger, i

and so is the variety of their asymptotic behaviors. In addi- $(z,t)=—2z+ (1), (70)
tion, while all solutions of the RTC are regular for all values

of t, some of the solutions of the CT@r particular choices

of the initial condition$ develop singularities for finite val- §(t)=2ut+&, (7d)
ues oft [32]. This is so even for the simplest cade-2; the
corresponding CTC is equivalent to the KS system which has 8(t)=2(u?+v)t+ 68, (79
both periodic and singular solutions.

Our result in this respect is that the CTC provides a good e\ [ —jeTi¢
description for the soliton interactions for a number of dif- f(x,t,\)= m( . ) (7f)
ferent choices of the initial conditions, see Sec. IV A. This €

holds true even for some of the singular solutions, which are )

adequate for values dfoutside of small region around the We have denoted by(t) and &(t) the soliton phase and

singularities. Another important conclusion drawn here isPosition, respectivelyg, and &, determine their initial val-

that theN-soliton interaction may contain principally differ- ues fort=0; v is the soliton amplitude and is its velocity.

ent effects as compared to the elementary two-soliton inter- Physically the most interesting initial configurations are

actions and to the RTC dynamics; see Sec. IV F. those representing sum of well separated pulses with nearly
We conclude with some conclusions and open problemsgqual amplitudes and velocities, that is,

Part of the results in this paper have been previewed in

[30,31,33. Ug(X) = Ung(X,t=0), (8)
II. N-SOLITON KARPMAN-SOLOV’'EV SYSTEM N
Uns(X, D)= D) U(Zg,ot), 9
A. Derivation of the generalized Karpman-Solov’ev system Ns(X,) kZ’l 2t ©
This section will be devoted to the NLS equation, i.e., to
Eq. (1), with where u,(z,t) is given by Eq.(7a with z, ¢, & and §
replaced byz,, ¢y, &, andd,, respectively.
R[u]=0. (4) An important paritcular case of Ed8) is the case in

which the eigenvalues df have equal real parts. Such an
The particular cases with linear and cubiaiiperturbations, injtal condition is usually referred to as aftsoliton bound
including a number of physically important ones, will be state.
considered in the following sections. We stress here that generically the Zakharov-Shabat sys-
We start by reminding the reader of the main results oftem with a potential fixed by the initial conditiof8) pos-
Karpman and Solov'e¥12] and generalizing them to the sesses\ pairs of eigenvaluea =z, +i%, and some non-
case ofN interacting solitons. o trivial scattering data on the continuous spectrum. This fact,
It is well known that the NLS equation is a completely ogether with the problem of reconstructing of the spectral
integrable Hamiltonian system. It can be solved with the helyata ofL, corresponding to initial condition@®) and (9) for
of the inverse scattering methdtSM) applied to the so- N=2 and 3 was analyzed ji14]. Generically, even for ini-

called Zakharov-Shabat system: tial conditions withu,=0 andv,= v, we obtain eigenvalues
q with #7; and u#pu; for k#j, i.e., the operatot. has
Lf(x,t,A)E<ia3—+Q(x,t)>f(x,t,)\)zxf(x,t,)\), N_simple discrete eigenvalue_s. Most o_f the result_s obtain_ed
dx with the ISM have been derived precisely for this generic

5 situation. However, the nontrivial interrelation between
. _ _ v, mk andpy, i, presents as one of the serious difficulties of
where the potentiaD(x,t) is expressed in terms ofx,t) by e analytical approach.
To our assumptions above we add one more: that the soli-
0 “(X’t)) ©6) tons are well separated, so that their overlap is small. Then
—u*(x,t) 0 the N-soliton solution can well be approximated by the sum

Q(x,t)=<
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of N one-soliton terms as in Eq9) above. Mathematically

these restrictions can be expressed as dt =M[ul+ E MP'[ul, (14b)
| = pen| < e, (103 dé
— =2+ EQ[u]+ X EP[u], (149
|v—vo|<v, (10b) dt “ =
N dg
1 K (24 12+ X (P
#:Ngl s (109 gr 2t v X [U]"’pzo Xi'[u], (140
LN XPul=2uEP[u]+DP[u], (149
=52 v (109
v =" where the right-hand sides of Egd4a—(14d are deter-
mined byR{P[u] through
v|€ok— onl>1, (109 d
NP[u =lf Re(RP[ule™ %), 15
[ vel € onl <1 (100 CIUIZ2 ] Costy, RERCTUle 0, 19
Next we insert Eq(9) into Eq. (1) with R[u]=0. Itis not = dzsinhz, _
difficult to see that, due to nonlinearity, ttéh soliton will MiP[u] j “cosRz. ImM(RP[ule”'%), (16)
be influenced by the others. This influence will contain terms - K
of first and second order with respect to the overlap. We will
take into account only the first-order terms and suppose that =E(P[u]= f Re(R(p>[u]e"¢k) (17)
their influence only changes the soliton parameters. Thus we 4vk — COShZ
obtain
de(l Zktanl'zk) .
iU+ 3 Ut | Ui 2u =iRY [u]+|R [u], (11 p)[u]——yk _m—coskzk m(RP'[ule™" ),
18
where (18)
wherep=0,1,2....
RO[u]=S (2Jud2u,+u2uf)=> RO[u], (123 First we deal WithR(kOL[u]. Inserting into Eqs(15) and
n7k nk (16) the expressions fdR{%)[ u], which due to Eqs(7a—(7e)
and(12) take the form
RO[ul= > (2uutu,+u,uul). (12b 2
“ ndmek K RO[ule %= &(Zewn—wueiwk—%))
_ kn coslfz.costz, ’
We prove in Appendix B that the terms R}[u] can in fact (19

be neglected.

Note that now we have no real perturbation; the termg"© find
R®[u] andR{®[u] on the right-hand side of Eq11) just
take into account the fact that we deal with an approximation N(ko)[u] = 2 Re4v§vn[2e*i¢0:kn7?3( — an»brn s Brn)
to theN-soliton solution. Analogously, any additional pertur- n#k

bative terms on the right-hand side of Efdj), + €' %0k Py( Ay, bins B 1, (20)
R[U]ZDZO R(p)[UJ, (13 M(kO)[u]: E |m4VEVn[Zeii¢0:k"Q4(_aknvbknkan)
n#k

will lead to nontrivial contributions to the right-hand side of +€e'%0knQ (ayn,byn Brn) 1 (21

Eqg.(11). We will denote there bR(kp)[u]; their explicit form

will be given in Sec. Ill below. where

Our first aim here will be to evaluate the effect of each of daz

the summand®&(®) on the right hand side of E11) on the P(ab B):f dz 22)

parameters of thith soliton. This can be done in much the P — COSHz cosh (1+Db)z+ 8]

same way as for the two-soliton case. Next we will also take .

into account the possible perturbations. In general the result o dz €?%sintez

can be cast into the forms (ab.p)=| w7 cosT (17 D)2+ 3]’ (23
v .

_k:Nf(O)[u]Jr E Nf(p)[u], (149 and the parameteray,, by, and By,, depending on the

dt p>0 parameters of thkth andnth solitons, and are introduced as
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az+ ¢0~>¢k—¢ =ag Zk+ ¢0;k s (24) (2n_1)” ar
e " Jon+1(0)= i 2 (29¢
bz+ f—z,— 2 =bynZc+ Brn, (25
e g Here we keep thea dependence because, in calculating
=0 268  E[u] and D™[u], we will need the derivatives of
Yk Py(a,b,8) and Q,(a,b, ) with respect toa.
_ Now it is not difficult, using Eqs(27)—(29), to calculate
b= X, (26  the contribution of each summand9) to the right-hand
Vg sides of Eqs(14a3—(14d) and to derive the following set of
4N equations, generalizing the Karpman-Solov'ev system:
Bkn=2vn(ék—&n), (260
d
Pon= S n— 2ttn( 6 En).- (260) G =2 160Evae Pelsing, (30)
n#k
The calculation ofZ(”[u] and D{®[u], which contain an
additional factor ofz in the integrand, requires a knowledge dp,

of the first derivatives of?, and Q, with respect tca. =— > 16v2v,Se Prlcospo.n, (31)

The calculation of these integrals is described in Appen- dt n#k
dix A. Most of these integrals cannot be expressed in terms
of elementary functions. Even if that was possible, we would déy Bl
have obtained an overcomplicated system of equations, szﬂk—r;k 4vpSkne Pkn'singo kn , (32

which could hardly be used for practical calculations. There-
fore we will limit ourselves to the limit of these integrals for
a,—0, b,—0, and B,,>1. Our reasons for this are the
following: first, as is shown in Appendix A, the precise an-
swers for these integrals are smooth and well behaved func-
tions for small values ob,, anda,,,. The second reason is + 24y v,e” 1 Prrlcospg ). (33
that we have already neglected terms of the same order as we
could account for. Here the summation is over the nearest neighbors of the
As a result, for3>1 we find kth soliton, i.e., the ones for whick,— &, is minimal. In-
_ deed, since we care only about terms of orelef’«nl, taking
Pp(a,b,ﬂ)z4e‘|ﬁ|( 1— %) Jo-1(a), (273 into account the other terms will be an overestimated preci-

Y i
WzZ(Mﬁ-i— vﬁ)+r§k (—8ukvnSkn€ ™ Prrlsingg

sion.
It is worth noting, that the number of the summands in
4e71FlA (2, B) Egs.(30)—(33) will depend very much on the initial configu-

Qp(a’b’ﬁ):mjpﬂ(a)’ (27D ration of the system. In what follows, we suppose that the
solitons form a chainlike configuration of nearly equidistant

Ay(a,B)=sga’+i(p—1)a—sg(p—2), (270  solitons, and that thkth soliton has as its nearest neighbors
thek— 1st andk+ 1st; then each such sum fork<<N will

Sp= SgnB, (27d)  contain only two terms, while only one fédr=1 andk=N.
We can also assume without restrictions that &, 1; then
where byJ,(a) we have denoted the integrals Skk_1=1 ands, ;1= —1. In this case, after introducing the
a2 notations
j(a)=Jm dzé :J'wdxcoax 29
P _.2coskz ], cosx Scn=e"Ply sins,\do.kn, (34a

Obviously,7,(a) are even functions o, while their deriva-
tives j;(a)z(djp/da)(a) are odd functions of. In par-
ticular, their values fom=0 are given by

Ck,n:ei‘ﬁknbncosd’o;knv (34b

we find that the systert80)—(33) can be rewritten as

AO=3, (293 ;
4% 2
Tt~ L16i(Sck-17 Sk 1) (35
J2(0)=1, (29b)
d
d?;a) =0, (2990 % = —16v(Cy k-1~ Ci ks 1) (36)
a=0

(2n—2)11 dé,

Ton(0) = n=11’ (290 gt = 2mk ASkk-1t Seka) 37
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dé, , perturbations for various choices of the constamtsndds
rTE 2(pict Vi) = 8ui(Sck—1F Skk+ 1) in Egs.(39) and (44).
+ 24 (Cy k-1 Crk1)- (38) A. Case with linear in u perturbations

We start with the case when
B. Discussion

System(35)—(38) is rather complicated as it is, and there- RU[u]= i c @ (39
fore we have two possibilities to state some properties of its & sdxs?
solutions:(i) to solve it numerically andi) to consider some
particular cases as well as some further approximations. @herec,=cg+ics; are complex constants. Fixing up their
order to estimate the performance of syst88)—(38), we  yajyes in a convenient way, we can describe a number of

solve it numerically for different initial conditions and com- physically important perturbations. We shall discuss these
pare the obtained results with these from the numerical S%oint in Sec. 11l D.

lution of the NLSE (1) by the beam propagation method = |hserting these terms into the right hand sides of Egs.
(BPM) [31]. A very good agreement has been identified for(15,_(18) after somewhat lengthy calculations, we obtain

the case of initially equal and equidistant pulses with initiali,5¢ they lead to the following additional terms in system
phase difference O and. Moreover, it has been shown that (145 (149

system(35)—(38) could be useful even in describing the in-
teraction of pulses with initially unequal amplitudes. Indeed,
in [34] a numerical comparison between the GKS and BPM 1)
has been performed for the case of four equidistant solitons Nk [U]=2Cook— 4C1aukvk— 8Ca0vk
with alternatively changing amplitudes. It has been shown

that there is very good agreemeain error less than 3% +16C31V|<Mk(#§+ Vﬁ), (40)
between them for distances from=5 to 10. Several re-
marks are in order.

(1) Up to now we have not considered physical perturba-
tions. However, the approximation itself violates the integra-
bility of the NLS and leads to the highly nonlinear GKS. (41)

(2) The right-hand sides of the GKS contain two types of
terms. The first type describes the soliton self-interaction
(see[35]). The second type of terms is characteristic of the
two-soliton interactiongd12]. These terms relate only the
nearest neighbors of the solitons.

(3) Since the GKS is a nonlinear system, thedaes not
allow superposition principle. Therefore it is not possible,
knowing the two-soliton interactions, to describe the interac-, . . . .
tions of N=3 solitons; indeed a middle soliton would be AS IS obwpus from the above system, the pertur_batlons linear
influenced by its left and right neighbors and its behavior![g léa(ffgﬁgﬁutt:rr?g};gffr.mfemgceare local k It is natural
would be very different from one of the end solitons. :

(4) The N-soliton system has® degrees of freedom; its
behavior is determined generically bjN4eal constants, fix- B. Case with cubic inu perturbations
Ir?gv;g Irtr?ulcnrltl\f\llli d(;?nc?;['lsosn(.)fosfol(iﬁil:)rr?g tﬁ:ft;g:é?g: r\ggﬂlcd %jal'n this subsection we consider three types of cubic pertur-
to the two-soliton case. An example showing that this is tions
really so is provided in Sec. IV F below.

(5) In Sec. IV we derive an integrable approximation to
the GKS, and show that it can be useful for a larger class of

2
Vi oo
3 Mk

4
MU= — 3 (CoavitAcaomr) + L6Ca v i+ 75 v),

EM[ul=—cigt ACyuy+4Ca(3ui+ i), (42

XM [ul=Cor+ 4Co( g — v§) + 16Caoui( mi— V). 3
43

d d
R®[u]=dolu[2u+ 7 u(ul)+ (|uf2u,~usu?),

initial conditions. (44)
IIl. PERTURBED N-SOLITON KARPMAN-SOLOV'EV where again
SYSTEM
In this section we shall describe the effects to the gener- ds=dso+ids; (45

alized KS system due to the presence of various perturbation

termsR(P[u] on the right hand side of Ed1). In the first  are complex constants. The calculations are similar to those
two subsections we consider generic perturbations linear anid Sec. Ill A, although more involved. In particular, due to
cubic inu, with complex nonvanishing coefficients. Next we the presence of derivative terms, some other types of inte-
deal with perturbations relevant for the phase and amplitudgrals appeafsee the Appendix¢sHowever, in our approxi-
modulations and the driving force case. Section Il D is de-mations they can be explicitly evaluated. The result here is
voted to a brief discussion of the physical meaning of thegiven by
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3
Ou]= 2 gy 2> 1| 3dgo—d
N “[u] 3 (doo 211“k)+16vkn¢k 3doo— d21(2uk+ pn) = 5 d16Skn | Cin
vy
+ | doaSknt d1o( 4 — i) Sknt+ dooiticSkn T ?(dll_ 4d21)}5kn] , (46)
16v; 1602

k
MP[u]=— —= i+ —— > {~[3dosSnt duaict doo( 241+ ) Scnl Cin
15 3 n#k
+[doot (d11—2d20) iSknt d1a( 20— pn) — dogptic ] Sin} (47)
~(2)[U]——leo 42 1[3dgoSknt d1ovk— doa( 2 i+ 1) Skn] Cin
+[do1+ (dy1—2d9) »Sknt Aol sn— i) + Aotk ] Sknt» (48)
2
@7 VK _ D _
X [ul= 3 [3dos+ ui(3dyg le)]+8n¢k {[3(do1vk— dootekSkn) + (doovi+ doapekSin) (2k+ )

— v(dyouit dy19iSkn) 1Ckn— [ (doat+ daol e — i) + dooreid)

+ (doot d11(2 k= ) — darptk— d2¥iSkn) VicSkn] Skn} - (49
|
C. Pseudolinear types of perturbations ~(4) w2 sinhwy 0
Here we present results for some special type of pertur- [ul=~ 812 cosRw, ImF_(Q&), (59
bations, which also present physical interest. These include
2 .
Grul= (¢ < sinhw
R[ul= (Cx+ d)u(x,t) + Buyy, (50) x<4>[u]— 2 cosa IM{F . (Q&)—2uF _(Q &)},
which is important for the effects of sliding filtef46], the (60)

driving force perturbation
where wy = 7Q/4v, and

RW=foe! ™+ f 070, (51)
_ P60 -0
where we considef) to be a real and, and f; complex Fo(Q&)=(foe'k e D), (61)
constants, and
_ . and
RO[u]=(foe' ™+ fre " ™u(x,t), (52
which describes the phase and amplitude modulation effects. N> [u]= % ReF  (Q &), (62)
Skipping the calculations we present the results k
2 2 w?
14
N [u]=2Coméi(t) — 8By +uk +26vy, (53 M(P[u]= — —X ReF_(Q&), (63)
7 sinhwy
M [u]= 3¢~ ¥ Burk (54) s m 1— w,cothwy
2 S u]=5— T Sinwp ImF_(Q&), (64
EJ[u]= —zCo, (55)
2
wpcothw
’ X(Fu]= < ImF. (0
@) ™ sinhwy
X u]=— 1,2 ot c1é(t), (56)
Vi oy 1—wkCOthwk F (Q 65
- ka Sinhwk m 7( gk) ( )
(4) -
N TU1= 5ot REF + (260, (57)
D. Discussion of the physical relevance of the perturbations
M(¥[u]= —— ReF _(Q&), (59) The class of perturbations listed above is a very large
cos hd one. Here we (a) briefly discuss why some of the
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constants, anddg,, k=0 and 1, can be set to 0 without a TABLE |. Physically important choices for the perturbations.
loss of generality an¢b) mention special choices of the co-

efficientscy, anddg, that correspond to some physically im- Nonvanishing Physical
portant perturbations. constants phenomena
Let us consider the case when Eog linear loss and/or gaifi5,17]
iIRMUT= Gl — Corlow— deslul2u. 66 Coos C20 bandwidth limited
[ul=iC10ty= Carthox dorlul €6 amplification[15-17,42,37
It is well known that such types of additional terms do notCso third-order dispersiof38,43
violate the integrability of the NLS equation. Indeed, afterdoo nonlinear loss
the change of variables and/or gain42,36,16,48
dq; soliton self-frequency
X+Cyot shift [44,16
= \/T (678 d;;=3dy, self steepening44]
C21 R® sliding filters[45,16
- R®) with fo=f,= —ia/2, hase modulatiof46,47,4
(6.0 = VIF dog(x,0), (7p R hfomhmTiaz P pioarad

the NLS foru(x,t) with the right-hand side given by Eq.
(66) will go into the standard NLS equation farin terms of
the variablest andt. Therefore, from now on we shall sup- two-soliton interactions. Indeed, the right-hand sides of the
pose that,o=c,,=dy;=0. Of course this is possible only if €equations, describing the evolution of théh soliton, are
1+2c,.>0 and 1+dy;>0. But since we assume that these obtained by addingwith the corresponding sighswo types
are perturbation terms, then these constants should be sméfi terms:(i) the self-interacting terms, which are typical for

and the conditions should be satisfied. the one-soliton perturbatior(see, e.g.[35,12,16), and (i)
In a slightly different way we can absorb the terms the interaction terms, again are of the nearest-neighbor inter-

action (NNI) type, that is, thekth soliton interacts with
k—1 and k+1 solitons, and the corresponding terms are
typical of the two-soliton interactions. Of course, the first
and the last solitons in the chain have only one nearest neigh-
bor. In view of this we remark thata) the perturbations

= ) o o iR[u] that are linear inu contribute only to the self-
Indeed,R[g] can be wewgd as the variational derlvat|ve' Ofinteracting terms{b) the perturbationsR[u] that are non-
two of the integrals _of motion o_f the NLS. Therefore_ addm_g linear inu influence both types of terms in the GKS; aoil
these terms tp the right hand side of the NLS we will obtaingg in the unperturbed case, the perturbed GKS system is a
one of the higher NLS-type equations with the dispersiom,ighly nonlinear one and does not allow for a superposition
law f(N)=—2\2+co;+4csh>. It is well known that the  principle; thus the knowledge of the two-soliton interaction
KS method can also be applied to any of the higher analogsannot give us insight into th&l-soliton dynamics with
of the NLS[11]. Of course this is possible only if the relation N=3.
dy0=6C30 holds. If such a relation does not hold, we have the As we mentioned in Sec. II, the solitons interact even
following options: (a) consider €10~ 6czg)|ul’uy as a per-  wheniR[u]=0. Indeed, the approximation itself violates the
turbation term to the nonlinear evolution equatiMLEE)  integrability and leads to nontrivial effective perturbative
with dispersion f(\)=—2A%+coot+4c3\ >, (b) consider terms, see Eq$11) and(12). Although exponentially small,
(c30—d1/6)uyux @s a perturbation term to the NLEE with the presence of the NNI terms may lead to sizable effects:
dispersion f(\)=—2\2+cqot 2d;003/3, or (c) consider see how the relative spregi(t),
Calyxxt d12|u|2ux as perturbation terms to the NLS with
dispersion f(\)=—2\?+cq,. Each of these approaches
gives compatible systems of evolution equations for the soli- Bu(t) = En(t) — &u(1) (69)
ton parameters. N En(0)—&,(0)°

Without going into further detailésee[4,6]), we summa-
rize some of the physically important choices f& u] in
Table I. The papers in the second column are those in whicHescribing the divergence of the soliton train, falls off with
the two-soliton interaction has been analyzed in the presendée increase of the soliton numbgee Fig. 1 and Table)ll
of the corresponding perturbation by the Karpman-Solov'ev Let us consider a typical for the fiber optics perturbation:
technique. the third-order dispersiofiTOD). Such perturbation is rel-

It also seems that perturbations with fourth-order deriva-evant for at least two physical situatioria) when the carrier
tives will hardly be needed, so we have limited ourselves tovavelength is near the zero-dispersion wavelength of the fi-
Eq. (39). Some typical cubic perturbations such as the nonber and/orb) when the pulse width is very short.
linear gain have been analyzed for the two-soliton case in The effect of TOD on the interaction of solitons with
[36]. equal amplitudes was investigated [it4,38. It has been

As in the unperturbed case, the structure of the generaproposed irf14] that the effect of TOD can be used to avoid
ized perturbed KS system is determined by the one- anthe coalescence of two equal amplitude in-phase solitons. It

IR[U]= — Cogu+iCa(Uxxxt 6]ul?uy). (69)
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FIG. 1. Dependence of the relative spread
Bn(t) on the number of solitond in a train with
initially equal, equidistant, and out-of-phase
1 pulses. 24(0)=1, u(0)=0, &+1(0)—6,(0)
=, r(0)=6, andt=126 (lower curve$ and
t=2300 (upper curves Solid lines, BPM; dashed
i lines, CTC.

Relative spread

5
Number of pulses, N

has been shown that the interaction of two solitons withgeneral perturbation terms. The system itself fbr-2 is
equal amplitudes can be viewed as a break up of the correather complicated, and cannot be solved analytically. Here
sponding two-soliton bound state. Further, this break up ofve can repeat all our remarks from Sec. Il B.

the two-soliton bound state has been succesfully described We see two important uses for the GKS. It can be used in
by the two-soliton Karpman-Solov'ev soliton perturbation numerical investigations of soliton interactions. An impor-
theory[38]. Moreover, theN-soliton interaction of solitons tant question here is to describe the domain of initial condi-
with equal amplitudes was also viewed as a breakup of théons, for which the perturbed GKS is applicable. Second,
correspondingN-soliton bound stat¢38]. In the latter case after some additional approximations, this system can also be
acquired velocities are such that the solitons cannot onlyreated analytically. We show this in Sec. IV.

separate but also coalesce after some propagation distance.
Therefore TOD does not suffice to stabilize a multisoliton
train [37,38. From the point of view of applications this is

an important conclusion.

Similar effects on theN-soliton interaction can be ex-  Here we shall introduce additional simplification of sys-
pected also from intrapulse Raman scattering. Thus we hawem (35)—(38), which allows us to derive some analytical
derived the generalized KS system in the presence of rathegsults about the asymptotic behavior of its solutions. The

first approximation to Eqs(35)—(38), considered in[31],

IV. SOLITON INTERACTIONS AND THE COMPLEX
TODA CHAIN

TABLE Il. Dependence of3y(t) for N out-of-phase solitons for
three different values df, N=1,...,7 andr ;=6 and 8. The the-
oretical values are evaluated from formi20), the numerical are
from BPM.

consisted of the use of the average amplitwdend the av-
erage velocityu (instead ofy,, and w,,) in the exponentially
small termsS, , andCy ,. This follows the original idea of
the Karpman-Solov'ev approa¢ti2]. Even after that, how-
ever, systen{35)—(38) remains unsolvable.

t t=48 t=126 t=300 At the same time it was conjectured [[86,27] that the
N Num.  Theor. num theor. num. theor. standard real -I._Oda chai(rRTC) (with N=oc)-|:n{?1y reason-
r—6 aply We_II descrl_be the dynamics of the_posmqm; an infi-
0 nite train of soliton pulses. Such a conjecture, however, re-
2 2404 2362 5.049 4951 10.947 10.726 quires that the phase difference between the neighboring
3 1.937 1.896 3.837 3.726 8.074 7.810 solitons be constant. Looking at E(B8) and also at the
4 1.664 1642 3.116 3.036 6.350 6.151 results of the numeric simulations we find that this is not the
5 1495 1490 2.657 2.604 5.242 5.105 Case.
6 1393 1393 2346 2313  4.488 4.394 Although its derivation is mathematically not consistent
7 1.327 1.328 2123 2105 3.948 3.883 (se€g[31]), it has been established that at least for some types
fo=8 of initial conditions(equal and initially out of phase soliton
pulses the RTC gives a fairly good description of the pulse
2 1.278 1.274 1.990 1.981 3.593 3.574 positions in comparison with direct solving of NLSE) by
3 1.159  1.158 1.652 1.643 2.790 2.769 the beam propagation method. This we explain by the fact
4 1.107 1.106  1.465 1.460 2.332 2.317 that for small values of the phase difference stays rather
5 1.080 1.080 1.352 1.351 2.044 2.034 close to constant. What happens next is that the soliton po-
6 1.064 1.064 1.282 1.281 1.851 1.844 sitions rather quickly tend to their asymptotic regime. In it
7 1.052 1.052 1234 1.234 1.713 1.709 the distances between the nearest neighbors increase expo-

nentially, and as result the tern& , and C, , become so
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FIG. 2. Relative distances, velocities, ampli-
tudes, and phase differences evaluated for a train
of four pulses with initially equal, equidistant,
and out-of-phase pulsé2v,(0)=1, ©,(0)=0,
and &¢,41(0)—8(0)==]. We plot the ratios
[&(t) — &(t) 1/ (1), [v(t) = 2() 1 (),
L) = (01 (1), and [ 8(t) — (1) 1/ 8 (t)
wherek=1,2 and¢y, ., v and & are the so-
lutions for the CTC with four nodes, anég,
Mks Vg, and &, are the solutions for the GKS
with N=4. The solid lines correspond to=1,
and the dashgd ones to=2. (a) Relative dis-
tances[ & (t) — &(t) 1/&(t). (b) Relative veloci-
ties [ ui(t) — me(t) )/ (). () Relative ampli-
tudes[uk(t)—'ik(t)l/vk(t). (d) Relative phase
differenceq §,(t) — 8, (t) 1/ (1)

small, that the phase difference does not have any influenci(,— &,)/&/<0.03, i.e., smaller than 3%, whegg is the
~ The aim of this section is to propose another approximasolution of the approximated equation, whigis the solu-
tion to system(35—(38), which will reduce it to the CTC tion of the exact one. Analogical study of the phagks
with N nodes. This we view as a natural generalization of theelocities u, and amplitudes,, show errors on the order

conjecture in26,27.

less than 3%; see Fig. 2.

As a result the system of equatiof&5)—(38) goes into

A. Derivation of the CTC

Let us make the following approximations to system
(35—(38). First we change, to v and u,, to u in all terms
that containS,,, andC,,,. Indeed, bothS,,, andC,,, can be
estimated by |S.,|<e, |Cxi<e, where e=e "o and
ro=(&x— &+ 1)li=0. The parametee determines the overlap
between the neighboring solitons, and up to now we have
been taking into account only terms of first order with re-
spect toe. Then obviously, with the above approximation we
neglect terms likév— v, | e and|u— u,| €, which due to con-
dition (10) will be of higher order.

Second, in Eqs(37) and (38) we neglect the term§,,
andC,, as compare ta, vZ, andu?. The numerical study
of the system forN=2, 3, and 4 with initial conditions
ro=8, ¢o=m uc(0)=0, and r(0)=3 shows that where

de 2, ~
Wzle (Skk—1"Sk+1x)+ (70
dk = =
T 16v*(Cy k-1~ Cir 1%, (71)
déy
H_Zﬂ’k ’ (72)
ddy
EZZ(M%L vE), (73)
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Bin= 0 On—2u(E— &),

andsy k-1= —Sgk+1=1.
Let us now introduce the function

Exn=4v(Cyn—iSkn)
= exp( - 2V|§k_ §n| - isk,n¢k,n+ |n4V2)a
and the complex variables

)\k:,LLk'Fin.

Then the first two equations in systgif0) and(71) can be

rewritten as

A,
ar =4v(Ex 1~ Brk-1)-

600

(74
(75

(76)

(77

(79

(79

700

Let us now evaluate the derivatigE, (_,/dt, using on the
way the above-mentioned approximations. After some calcu-
lations we obtain

dEg k-1
a4 M) Bkt (80)
Analogously forEy, 1, we have
dBEy+1k
d¥ =—4v(Ner 1= M) By 1 (81)

From these equations we conclude that,_; and Ey. 1y
can be written in the form

Exk—1= —XP(dk—dk—1)» (82a

Ek+1x= —€XP(di+1— k), (82b)
where the minus sign in front of the exponents is for later
convenience. The dynamical variablgg satisfy the equa-
tions
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dog+1  dog dFy
dt+ _E:_4V()\k+l_)\k)a (83 F:VK(T-)‘)FK(T')‘)’ (923
or, equivalently,
d O _e(]k(T)
K _auny. (84) VT M=| gy (92

dt
If we now change the time variable fromto =4t and

assumep,= — A, then systen(70)—(73) acquires the form It is easy to check that this condition reads

%:ewﬂ—qk_eqk—%—l, (85) dUy

dr o7 = Vil TMUKT M) =U(T V(D) (99)
da
F_pk, (86)

and that Eq(93) holds identically with respect to the spectral
parametel provided thaiy, andpy solve the complex Toda

which is equivalent to the complex Toda chain chain system. In our case we have a Toda chain with finite

d2q number of nodes, equal to the number of solitbhsThere-
d—zkzeqwrl_qk—eqk_qkfl. (87)  fore the analog for the scattering matrix is
;
Let us briefly discuss how the new variabfgsandq, are T N)=U AU A)---U AU A
related to the old onegy, vy, &, anddy. Indeed, from the N7 ZUNT M Un-a(m ) Ualm MU (70
old variables we immediately construct the new ones. ay(7,\)  —by(7,\)
Slightly more involved are the expressions fqg and (94

“lbi(rN) ag(mn) |
Ok+1— Ok n(TN)  ag(7N)

=—2v&+K Indv?—i( 8+ S+km—2ué), (88 _ _
G Ve I m2pb). (89 The 7 dependence of y(7,\) is determined by

Qus1— Q= —2v( &y 1— &) +Indo?

—i — — - dT
o=t m=2plbii1= 801 (89 S = V(T TR =Ty V(7). (99)
where we have put

N
1 _ _
5:N2 5. (90) Due to the fact thaE; o= Ey;1n=0, we have
k=1

Then both expressions in E(2) and(84) will be compat- 0 0
ible up to terms of order #,— u)? and (v,— v)?, which VN+1(T’)\):(eqN(7) )\)’
according to Eq(10) should be neglected.

It is also possible to invert this transformation and, start-
ing from p, and g, to reconstructu,, vy, &, and &y.
Indeed, from the real and imaginary partsp@fand from Eq. Vqi(1,\) =(
(78) we immediately obtainu, and v,,. Then from the real
part of g, one finds¢, . Finally, given the imaginary part of
Ok, knowing u, and &, , we recoversy.

(963

0 e ql( 7)
) (96b)

0 N

and, as a consequence, from E@p) we find

B. Inverse scattering method for the complex Toda chain

Here we use the fact that the well known Lax d&ig] for day _
the standard Toda chain also holds for its complex version. dr =0. (97)
Below we shall follow the notations and the approach in the
monograph of Ref[2].

The complex Toda chain can be written down as the comTherefore, the (1,1) matrix element af,(7,\) is the gen-
patibility condition for the two systems erating functional of the integrals of motion of the complex
Toda chain. From Eq(94) we immediately find thaay, is a
polynomial of orderN with respect ton and therefore Eqg.
(97) provides us withN complex integrals of motion. Ac-
(91b) cording to Liouville’s theorem these are enough for the inte-

grability of the CTC, provided they are in involution. This

Firi(m. M) =U (7, M) Fi(7,0), (913

Pr(T)+N eqk”))

Uk(T,)\):( _e-mD g
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fact will be proved in Sec. IV C. We will finish this section which must be consistent with the definition of the tensor
by presenting the recurrent procedure of calculaligg, as  product: X® Y); ji = XY, -

functionals ofp, andqy. It is a standard procedure to prove that from Et02)
Indeed, it is easy to find that there immediately follows that the scattering matflix\)
satisfies(here and below we skip the indé¥
ag =1, (983
{TVST(w=[r(N=p), TM)@T(w)]. (109
aj =pi+A\, (98b)
These are 16 equations for the 16 matrix elements of the
a; =(p1+N)(pat+A)—ed2™ 9, (980  direct products. We shall list only several of them:
Let us analyze the expression fap . It gives us two {a*(N),a*(w)}={a"(N\),a (u)}=0, (1064

nontrivial integrals(the coefficients befora! and\°)

= pet pae const, (@93 [6" (V)b ()} ={b~(\),b™(w)}=0, (1080

b*(Mb™(u)—b™(M)b"(u)
A—u '

The first of these is the analog of the momentum conserva- (1069

tion; in KS notations it corresponds to the conservation of

u and v. For N=2 the second integral in Eq99), |, is at(w)a - (\)—a (uw)at(n)

related toA, used by Karpman and Solov’ev through {b"(N),b™(w)}=

l,=p,p,—e%2 91= const. (99b) {fa*(h),a (w)}=-

(1060

N
Ap,=12-4l,. (100
a“(Mb"(u)—b"(N)a™(u)

In addition a direct calculation allows us to conclude that the {b*(\),a%(u)}==+

generic solutions of the KS and CTC wikh=2 are equiva- A=
lent. (1069
The recurrent relation, which allows us to construct the
integrals of motion of the CTC for anM, has the form B . a*(M)b (u)—b~(N)a*(u)
{b~(N),a”(w)}=+ =4 :
an+1(TN)=(pr+a(T)+N)ay(7,\) (106f)

—@in+i(D—an(m gt ). 101)
n-(mh). (10 In particular, from Eq.(1063, we find thata®(\) and

. _ _ a*(u) are in involution for arbitrary values of the spectral
C. Involutivity of the integrals of motion parameters. and w. This immediately leads us to the con-

Here we use the standard classicahatrix approach. Is clusion that their coefficients,
well known [2], the Poisson brackets between the matrix

elements of the Lax matrid ,(\) can be written down in the . N N -
compact form a (N)=\ +2,1 [N, (1073

{Un()\)@Um(/-‘)}:[r()\_#)!un()\)@’Um(l’“)]gnmy
(102 {| Kol n}=0, (107b

wherer (A —u) is the canonical classicalmatrix given by ..ot pe in involution for all values d€. n=1.... N.

Therefore we see that the conditions of Liouville's theo-
FON— ) = P (10339 fremare fulfilled, and that the CTC is a completely integrable

AN—u’ Hamiltonian system. In particular, from the recurrent rela-
tions (101) we derive
1 0 0O
0010 %
- 1= pi, (1083
P=lo 1 0 of (103 s
0 0 01
N N—-1 1
. . (N) — — i+17 9= —(1(Ny2_
On the left-hand side of Eq102 we have used the notation 2 _Ej Pib; ]2::1 e+ 1m%i= o (137)°—Hy,
{Xev}, (108b
{XoY}ij u={Xi.Yji}, (104 \here
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N—-1

N

1

HN:_Z pJ2+ E eqj+17Qj_
21:1 =1

(109

In the real casédy becomes the Hamiltonian of the RTC.

D. Reduction of the Toda chain

Consider the Toda chai®7) with N>2. Our goal now is
to reduce this system to an effective one foe=2. Let us
write down equations for the differencgg, ;—q:

d*(d,—qy) .

Gz =2, (110

for the caseN=2, and

d2(Ce 1 —
(q‘:j*—lzqk) = @k+27Ok+1— D@lk+ 1~ Gk 4 @k~ dk—1
T

(111

for the caseN>2.

Now we require that all differencé411) be expressed by
only one effective differencqgﬁ— q‘i“ in such a way that
each of Eqs(111) goes into Eq(110) for the effective vari-
ables. We find that this is fulfilled if

Tr 1~ k= 95"— q"+ Inby, (1123

b.=k(N—k), k=1,...N—1. (112h

GERDJIKOV, UZUNOV, EVSTATIEV, AND DIANKOV
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Aj=4 192 5

Hn= 5

where AV and Ay are the Karpman-Solov'ev integral and
its generalization for thé&-soliton reduced system.

Important cases in which the dynamics of tNenode
CTC is effectively related to the specific choice of initial
conditions(IC’s) are

Pk(0)=—(u+iv), (1153
&k+1(0) — & (0) =Ty, (115b
Sk+1(0)— 6,(0)= 6, (1150

where u, v, ro, and &, are k-independent constants. Of
course, the integrals of motidf"¥) are all expressed in terms
of these IC’s. Imposing on  these IC’s we find

AZ=(N—1)A3, (116
WhereA§ is again the Karpman-Solov'ev integral.

Note that these two special cases are compatible only for
N=3. For N>3 the reduction requires that
&1(0)—£&(0) depends ork; see Eqg.(112). Therefore
strict results using both the reduction and the special initial
conditions can be obtained only fof=3. For N>3 such
considerations are approximate. We note that the maximal
values of Inf/b,_;) are less than 10% foN<7 and
ro==6, and about 7% for,=8.

Introducing, as in[12], the notationsA,=m,+in, and

Only in this section variables with a tilde refer to the reduc:ed]{(zN):m,\‘Jr iy and settingKN=AN from Egs.(114) and

system; they all are expressed in terms of 'p@ft— q‘fﬁ. For

(116), we obtain

readers acquainted with the theory of simple Lie algebras, we

point out that the CTQ87) is related to the algebrsl(N),
while the one withN=2 is related tosl(2). Therefore the

reduction to an effective two-node CTC described above

would correspond to the principal embeddingsdf2) into
sI(N). This is always possible, becausd(2) has an
N-dimensional irreducible representation for axy

We introduce the quantitie$™) and ™) by the equations

— — 1
Ok+1— Ok= —2v( rtN)— Zlnbk) +Ind1?

—i(ypN+7—2ur™)y, (1133
N = g8 g8f, (113b
PN =5 551 (1139

Thus all distances and phase differences are expressed

through only two effective parameter8” and ), and the

N-node CTC is reduced to an effective two-node CTC for

qeff_ qeff
2 1 -

Due to the reduction, th&l integrals of motion will be
expressed as functions of onl{™ and 1Y, which in turn

1/2

3t

m,, (117a

_< 6
NTIN(N+1)

1/2

n,. (117H

_ _( 6
W NINT D)

Next we can apply the Karpman-Solov'ev’s analysis to
these effective two-soliton systems and consider three differ-
ent situations corresponding to the choice of the integral
A,. We formulate the results, which allow us to explain the
data in Fig. 1.

(i) Let my#0. Then the interaction is repulsive. In order
to explain the data in Fig. 1 we consider only the asymptotics
of the solutionRM(t) =&y (t) — £;,(t). Using the results in
[12] we find that, fort— * oo,

R Y 6(N—1)2\1? N—1I 472
NO==2A NN M o e

N—lI N(N+1) lI 12
THT—ZH[(N—].).].

(118

are naturally related to the integrals of the correspondinghe last two summands balance each other to a high degree

effective CTC. In order to make comparison wjtt2] sim-
pler, we introduce

whenN>3 because BI(N—1) is actually the mean value
of all b, and forN=3 they cancel each other. From Eq.
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(118 we can evaluatg@y(t) =Ry(t)/Ry(0) for large values in addition it was assumed that the phase differenggsg,

of t. In particular, forB, and 83, we obtain remain constant in time. As we can see, this last assumption
is not compatible with the syste®5)—(38) derived above.
42 Let us now briefly discuss the relations between these
2mat + Z'”m facts and the CTC. If we introduce the real and the imaginary
Bo(t)= z 2 (1199  parts ofgy by q=Py+i¥, then the CTC will be rewritten
R2(0) as a system of ¥ equations for the R real variable?, and
VY. If we now impose the condition¥,,,—¥ =¥
1 42 =const, we then obtain
\/§m2t+ —Inﬁ
Ba(t)= 2y _man; (119 2
3 Ro(0) ‘ O —cost(ePa PP Pin), (122
T

ConsequentlyB;< B,, and the numerical results on Fig. 1
are described very well. )
The time dependence @y can also be derived in the d qu:sin\]}(ePkJrl*Pk—ePk*Pkfl)' (123
generic case; sg89]. For example, if the IC is provided by dr?
Eqg. (115 we find[39]
This system is consistent only provided $irO, i.e.,
16ve "o T & V=0 or 7, as has been chosen[i81]. These two cases are
Bn(t)= (N=Dr COSN+ 1sin?tJr 1 substantially different. Indeed, fo¢ = = we obtain the RTC
0 in its standard form, solved b}29]. In fact we used this
N1 solution in deriving Eq(120). For =0 we obtain a differ-
- m'n(z N, ent, and much less studied, version of the RTC, one with a
“wrong” sign on the right-hand side, which has singular
solutions; we will call it the singular RTGSRTO. This
reflects the fact that the CTC has a class of solutions that
become singular for finite values gfsuch singularity exists
also forN=2; see(ii) in Sec. IV D above.
-1 Recently it was also checked numerically that the SRTC
=5 gives an adequate description of the soliton positions for the
K case when we have a train of three solitons with initial con-
“NT1° ditions: v,=3, u=0, ro=8, andd,=0 or 7; see[31] for
values oft up to about 50. Our more recent check shows,
These formulas are compatible with the BPM fige=77. The  that SRTC gives a fairly good description of the soliton in-
interval of validity grows withr. In general the range of teractions excluding the neighborhood of its singular points;
validity of these formulas is related to the problem of finding S€€ Fig. 4 below. _
the class of initial conditions, for which CTC is an adequate _Another important difference between the RTC and the

N—-1
=11 (costj—coshy), (120

O

approximation; see also Sec. IV F below. CTC is that the CTC has a much larger class of asymptotic
(i) Let now my=0, ny#0. Then in theN-soliton case States than the RTC. The only possible asymptotics of the
we may have also a periodic solution; see formy@8)—  RTC can be described as “free solitons,” each one moving

(3.35 in [12]. For equal amplitudes the parametarin this with its own velocity[29]. At the same time the CTC also
formula vanishes and the solution becomes singular. Usingjossesses asymptotic states, where s@mall) of the soli-
the reduction we find, that such singularity takes place als&nS form bound states; see, e.g., Figs)33(g).

for the three-soliton case with equal amplitudes aget 0. The CTC is deriV(_ad in a natural way from the generalized
For the three-soliton case we also find explicit expressiorkS €quations. We view thi-node CTC as a natural gener-
for the period alization of the results of the-node RTC[31]. The generic

N-soliton solution of the NLS equation can be viewed as a
dynamical system with I8 degrees of freedom. The same

T3:L: 2 =2T,, (121)  holds true also for the GKS and for a CTC with nodes.
2v[ng|  2v[ny From this point of view the CTC is more adequate for de-
) . . scribing the soliton interactions, and may be expected to do
i.e., the period lengthens with the growth Igf so for wider a class of IC’s than the RTC.

(i) If my=0,ny=0, andN =3 then there is no essential ~ Formgally the solutions of the CTC can be obtained from
d|ffer9nce from the two-soliton case due to the reductionnose of the RTC by making the corresponding coefficients
described above. complex. As a result we may expect a richer variety of so-

lutions and asymptotic behaviors. From general consider-
E. CTC versus RTC ations it follows that the asymptotics of the RTC are de-
We already mentioned above that soliton interaction in arscribed by “free” solitons, each one moving with its own
infinitely long soliton chain has been conjectured to be deasymptotic velocityuw,, such thatu,# u, for k#n. In the
scribed by the infinite real Toda chdj@7,26. In these pa- case of the CTC the asymptotic is described by the “com-
pers only the soliton position&, are taken into account and plex velocities” i, +iv,, whereu, characterizes the veloc-
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FIG. 3. Comparison between the CTC and BPM for other initial conditi@3 he positions of a two-soliton interaction with initial state
1 (0)=0; Vk(0)=%; ro=8; k=1 and 2; ands,(0)— §:(0)=—0.05r. Solid line, BPM, dashed line, CT@b) The positions of a three-
soliton interaction with initial statg., (0)=0; »,(0)= %; ro=8; k=1, 2, and 3;6;(0)= 85(0)=0; and 5,(0)= — 0.05x. Solid line, BPM;
dashed line, CTC.(c) The positions of a four-soliton interaction with initial stateg,(0)=0, v.(0)=v3(0)=0.95/2,
v,(0)=v,(0)=1.05/2,r,=8, and§,(0)=0. k=1, 2, 3, and 4. Solid line, BPM; dashed line CT@) The positions of a three-soliton
interaction with initial stateg:,(0)=0, v1(0)=0.95/2,v2(0)=%, v3(0)=1.05/2,ry=8, 6,(0)=65(0)=0, ands,(0)==/2. k=1, 2, and
3. Solid line, BPM; dashed line CTQe) The velocities of a three-soliton interaction with initial stateg(0)=0, »,(0)=0.95/2,
v,(0)= % v3(0)=1.05/2,r,=38, §1(0)=85(0)=0, and5,(0)=n/2. k=1, 2, and 3; CTC(f) The velocities of a three-soliton interaction
with initial statesu,(0)=0, v1(0)=0.95/2,v,(0)=1/2, v3(0)=1.05/2,r;,=8, §,(0)=65(0)=0, and5,(0)=/2. k=1, 2, and 3; BPM.
(g) The amplitudes of a three-soliton interaction with initial stajeg0)=0, v,(0)=0.95/2, v,(0)=1/2, v4(0)=1.05/2, ry=8,
61(0)=65(0)=0, and8,(0)==/2. k=1, 2, and 3; BPM.

ity and v, the amplitude of thekth soliton. Again we may choices of the initial conditions we find periodic and singular

haveuy+i v # wn+iv, for k#n, but now this does not nec- solutions.

essarily mean thaf, # u,. This explains why the asymp-

totics of the solutions of the CTC are richer than those of the . .

RTC. In particular, it is known that the CTC has singular F. GKS and CTC: Domain of validity

solutions that “blow up” for finite values of; see[32]. We An important problem in this context is to describe more

show examples of such solutions fN=2 and on Figs. 4; precisely the domain of validity of both the CTC and GKS

note that these solutions are both singular and periodic. models. In order to show that this domain is larger than a
In addition, we see that the asymptotics of the CTC maysmall neighborhood of the initial conditiori$15) we present

include bound states of twor more solitons which stay several examples, illustrating that CTC may fairly well de-

equidistant with a very good precision; their velocities scribe the soliton interactions under a large variety of IC's.

slightly oscillate around a common average value, see Figén analysis of the GKS has been performed34d], where it

3(e)—3(g) below. Of course this is possible only for solitons was shown that the GKS reasonably describes the interaction

with different amplitudes. of large sequences of unequal soliton pulses. A comparison
This is also consistent with what is already known frombetween the GKS and the CTC was given above in Sec.

the exact results for two-soliton interactions. Fo=2 the IV A.

CTC is equivalent to the KS system whose analytic solution In all cases below we choose the solitons to be equidistant

was obtained iN12]. These results show that for certain with ro=6 and 8 and with vanishing initial velocities. For
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FIG. 3 (Continued.

brevity and clarity let us introduce the following notations DP'={8,(0)=0,8,(0)=m/2},
for the sets of initial amplitudes and phases:
AN=121,(0)=1.0k=1,... N}, D{?'={5,(0)=/2,5,(0)=0}.
AP ={24.(0)=0.95,2,(0)=1.0}, In Figs. 3@ and 3b), we see very good quantitative
" =1211(0) 2(0) + agreement between the CTC and the BPM for two- and
AR'={21,(0)=1.0,2v,(0)=1.05, th(rge s(c;ilton mtergcﬂons, with IC’s given 2 D% and
Ay’ D37, respectively. Here and below we assumge-8
A(13)E{2V1(0)=O.95,21/2(0):1.0,21/3(0):1.03, and . (0)=0. The choice of this initial phase difference

avoids the singularity of the corresponding CTC solution.

On Fig. 3c) we show four solitons witth{? ,DEY like in
[23]; we again find a good agreement with the BPM for
values oft up to 120 and above 170.

AP={21,(0)=2v5(0)=0.95,2v,(0)=21v,(0)=1.05,

D§V={8¢+1(0)— 8x(0)=0k=1,... N—1}, Very interesting is the situation depicted in Fig(dB
where we consider three solitons wif{>) ,D{®. Here we
D{V={8+1(0)— 8(0)=m k=1,... N—1}, find that two of the solitons form an asymptotic bound state,
while the third one separates off. This is confirmed also by
D?={8,(0)=0,8,(0)=—0.057}, Figs. 3e) and 3f), where we show the velocities of the soli-
tons evaluated with the CT[Fig. 3(e)] and BPM[Fig. 3f)],
D<3)z{51(0):0,52(0)=—0,05;7,53(0)=0}, respectively. Here CTC gives a good agreement with the

BPM, which also extends to the description of the soliton
amplitudes; see Fig.(§).

This example also illustrates the fact that a knowledge of
@) only two-soliton interactions cannot be sufficient for descrip-
D,7={61(0)=0,6,(0)=7/2,55(0) =0}, tions of the three- andll-soliton ones. Indeed, we know that

D§={51(0)=0.8,(0) = m/2,35(0) =},
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two solitons can form a bound state only if their initial ve- NLS with a vanishing right-hand side. Applying the same
locities are equal, the phase difference is equal to zero arkind of approximations to the perturbed versions of the sys-

the amplitudes are different; for exampl&?) ,D{?. tem (35)—(39), i.e., withiR[u]+0, we obtain perturbed ver-
At the same time, in the case of FiggdB-3(g), the first ~ sions of the CTC.
and second solitons are characterized®§ ,D{? and the However, in doing this consistently, one may meet diffi-

second and the third solitons B2 ,D{?. Both these con- culties. First of all, note that in both{”’ and M{? one
figurations in the two-soliton case lead to a repulsive interObtains additional self-interacting terms, and now one should
action, so if we apply the two-soliton intuition for the three- perform a balance between them and the already present ex-
soliton case, we should expect that the three solitons separa@@nentially small termsS, , and Cy ,,. If the latter are the
off. However, what we see in Figs(@—3(g) is qualitatively ~ dominating terms, due, say to the fact thgf andM (P are
different, and can be predicted in no case by the two-solitorgither O or are multiplied by a small constant, then we indeed
solution. obtain a perturbed version of the CTC. If, however, the per-

In Figs. 4a) and 4b) we show the two- and three-soliton turbative termaN{" andM({P, p>0 happen to be the lead-
interaction with A{? D& and A{®,D{®, respectively. ing ones, then no CTC may result; this situation must be
Again we see that the CTC qualitatively describes the solitorgonsidered separately.
interactions very well, with the exception of the regions Another case, to be considered separately is the case of
where the singularities occur. Another similar example forsolitons with unequal amplitudes. The derivation of the CTC
three-soliton interactions can be seen in Fi(h)4We see in this case, strictly speaking, should be done separately.
that the corresponding BPM solutions also tend to show dndeed, if there is a substantial difference betwegrand
periodic behavior, and that the periods of both solutions are/c-, we cannot replace, in the arguments for the expo-
roughly the same. Finally, the ratio of the periods k=2  nents exp{|Bk_1|) and exp¢|Bkx+1]) by the average am-
and 3 are related through formula21). pltude ». Then generically exp{|B-1)) and

Up to here we analyzed the soliton interactions of the purexp(—|Bck+1|) will be of different orders of magnitude.
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There is, however, a particular situation, namely, V. CONCLUSIONS
vi=wv3=--- andv,=v,=---, when both terms on the right

hand side of Eqs(35) and (36) will be of the same order of We have generalized the Karpman-Solov'ev approach for

itud hich. h il be diff ¢ d4d and an arbitrary number oN>2 interacting solitons. We have
magnitude, whic » however, will be di ere_nt Or 000 and peen also able to account for a large class of physically im-
even values ok. It is known that soliton trains of four in-  n,ant perturbations. As a result we obtain a dynamical sys-
phase unequal amplitude solitons demonstrate stable propgsm of 4N equations describing the evolution of the soliton
gation[23,34; see also Fig. @). parameters under these perturbations.

Finally, let us briefly discuss the cases when the systems ag it should be expected, the right hand sides of the dy-
derived above fail to describe the soliton interaction. Ofyamical system of equations for the soliton parameters con-
course, this may happen when the initial approximatid®  {ain complicated nonlinear nearest-neighbor interaction
GKS, nor systen{35)—(38) can be expected to work. ciple, so that theN-soliton interaction can not be reduced to

As an example of such a situation we point out the case °§eparately interacting soliton pairs.
soliton collisions. It is well known that in the case of \ye have also proved that the dynamics of the train of
AfY,DEY, N=2 and 3, they attract each other, and as a-soliton-like equidistant pulses wittnearly equal ampli-
result the distance between them diminishes and approximggdes and velocities and moving according to the unper-
tions (10) may fail. Somewhat unexpectedly we find that thetyrbed NLS equation after some simplification reduces to the
CTC describes very well the soliton pOSitionS even for Sucm_node Comp|ex Toda chain. If we choose the phase differ-
IC’s, failing to do so only in comparatively small regions ences between the neighboring solitons torhewe derive
around its singular points; see Fig. 4. _ the RTC for their positions, which was analyzed earlier in

Let us briefly comment on the effects of perturbations onf31],

GKS and CTC. Of course th|5 iS an Open f|e|d Wh|Ch I’equires It is possib'e a|so for some types of perturbatidﬁsu] to
more than one paragraph or paper to be covered. derive the corresponding perturbed versions of the CTC.

Some of the perturbationge.g., the bandwidth-limited This fact can be used for describing the class of initial con-
amplification and nonlinear gaimlo not violate the symme-  ditions under which the propagation of solitons will be
try of the soliton train. Othergsuch as third-order disper- staple, and compare them with the already known stable
sion) act in an unsymmetrical way on the each of the pulsesgombinations, sef22,23.

As a result the amplitudes of the pulses change substantially Other important question outlined above are as follows:
due to the perturbation and violate the initial approximationS(a) To describe the class of initial data, for which the CTC
The applicability of the Karpman-Solov’ev approach for the adequately describes the soliton interactions. The examples
two-soliton case is investigated in detail[i88]. ~ given above show that it is larger than just a small region

Other perturbationgsuch as TODmay lead to substantial around the initial condition§115 with ,=. (b) To use
rad_lat|on, and thus the adiabatic approximation be_comes INhe explicit solutions of the CTC and their larg@symptot-
valid. Therefore, such processes cannot be investigated Witds for a description of the behavior of the soliton trains.

the method proposed above. An analytical approach to thgyork in these directions is under progress; E2@.
study of the effects of radiation was proposed recently in

[40]. These problems are out of the scope of the present
work.

In some casege.g., for bandwidth-limited amplification  \ye are grateful to Professor F. Lederer and Professor E.
and nonlinear gairthe perturbed NLSE acquires the form of yor0z0y for useful discussions. One of (0¢.S.G) thanks

the Ginzburg-Landau equation. Then even for comparativelyyofessor F. Lederer for his kind hospitality at Jena Univer-
small values of the perturbation coefficients the NLS solltonsity, where part of this work was done. We thank Dr. I.

pulses due to the interaction may transform into the exacktanoev for helping us with the data processing. This re-
solutions of the Ginzburg-Landau equati@®]. They differ  search was supported in part by grants from the Deutsche
from the soliton pulses by their amplitudes, widths, and moskqrschungsgemeinschaft, Bonn, Germany, in the framework
importantly, by their chirp. Their interaction should be de-f the |nnovationskolleg “Optische Informationstechnik”

scribed by other method21,36. and Project No. Le-755/4, and Contract Nos. F-215 and

Although the list of these situations can probably be ex.523 with the Ministry of Science and education of Bul-
tended, we would like to stress again, that there definitelygyig.

exist a manifold of initial data for the solitonlike pulses, for

which system(35)—(38) and(or) the CTC give a proper and

adequate description. It is known, that the asymptotics of the APPENDIX A

solutions of the standard RTC are given by the free motion o0 \ve briefly describe the evaluation of the different

of the particleq29), in our case solitons_. Its generalizati_on, types of integrals that appear in the calculations, and more
the CTC, possesses a much richer variety of asymptotic bes'pecifically their asymptotic behavior foa,b—0 and

hawors, see F_|gs.. 3 and_ 4. Wha}t WOUld. be ideal for the 0pB>l. The simplest types of integrals that appear have the
tical communications lines using solitons would be 1050rm

achieve a stable propagation of soliton trains in which the
solitons have nearly the same asymptotic velocities. There- iaz
fore, we believe that further studies of the CTC may help to J(a)= Jx dzé

shed more light on this problem. P -« 2 coshiz’
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] _Jm dz d%%sinte Alb o 4e” 1A "
p(a)= o coshiz (Alb) Qp(a, ,ﬂ)—m p(@x,B)Tp-2(ax)
-2
Using integration by parts, these integrals can be expressed X[1+0(e ‘B‘)]’ (A7)
by J1(a) and J»(a), which in turn are known from the )
tables of integral§41]. We have Ap(a. ,B)=sgaZ+i(p—1)a.—sx(p—2). (A8)
a2+ (p—2)2 From these formulas we can easily also evaluate the behavior
a)=——-T,_o(a), A23a) of the integrals
. Ro(ab.8) f“ dz €%z
1a a,b0,6)=
Jp(a)= m\7p71(a) (A2b) P —« cosiz cosh (1+b)z+ 3]
1d
T {azo
J(a)=————, (A3a) _ J“ dz é¥?zsintz
ZCOSﬁa_W Spl(a.b. ) — cosiz coshi (1+b)z+ B]
2
1d
ma =7 d—an(a,b,ﬁ), (A10)
Jo(a)= a (A3b)
2sinh—- which appear in evaluatin@(*[u] and D{®[u]. Further,

when evaluatingZ(P[u] and D{P[u] with s=1, we also

Obviously 7,(a) are even functions of, while J/(a) are ~ encounter integrals of the types
odd functions ofa. In addition, 7,(a) are Schwartz-type

functions ofa on the whole axis. In particular, (" dz é3%sinj (1+b)z+ B]
. up*Z(a’b”B)_J,wcoser cosK[(1+b)z+B]’
0)= Es— Ul = (A4a) (A11)
Jastal (2s)!! 2’
B » dz d3%sintez sinH (1+b)z+ 8]
2s—2)!! ——
J2s(0) = EZs——l)” (Adb) Wp2a.0.8) J',oo cos®z cosH[(1+b)z+B]

(A12)

and their first-order derivatives with respectaosanish for
a—0.

Let us now analyze the integral$,(a,b,8) and
QOp(a,b,B). We do not know exact explicit expressions for
them in terms ofa, b, and 8. However from Eqgs(22) and Vi .
(23) one concludes that they are Schwartz-type functions of ~ “p2(@b,B)= V—n[laPp(a,b,ﬁ)— PQp+1(a,b,B)],
their parameters in the stripmal<p+1+b. In our consid- (A13)
eration we assum@>1 and|Imaj<1, b<1, soa and
a.=a=ib are always inside the above-mentioned strip of ,
the complex plane. This fact allows us to assume that the — KT —(p—
derivativgs ofF;II orders of our functions will be smooth and Wpda.b.p) Vn[|an(a,b,,8) (P=1)Pp-s(a.b. )
bounded.

which, after integration by parts are expressed throfgh
and Q,,

In the case whehg|>1, we obtain +PPp+a(a,b. B)]. (Al4)
piaz These formulas are enough to evaluate the necessary expres-
~pelaszg-|6l —§,Si sions for the coefficientsl{P[u], ..., D{P[u].
oS (1+D)2+ A] 2e'%+%e"Fl(coslz— sgsinte) kK Lu] K Lu]
X[1+0(e 28], (A5) APPENDIX B

Let us show now in more detail what kind of approxima-
tions we perform in deriving the generalized Karpman-
Solov’ev system and the CTC. First we shall explain why the
terms R(”[u] in Eq. (12) can really be neglected. Indeed,
Jp-1(ax) inserting the termu,u’ u,, into the right-hand sides of Egs.

(15—(18) we obtain integrands with denominators of the
X[1+0(e"2Ah7, (AB)  type

wheresg= sgn3. After simple calculations using E¢A2),
we obtain

iSga.

~ 7‘[3‘
Pp(a,b,B)=4e o—1

1_
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1 o N
— 2 2 _ 2 — 2
cosPz.coslz,costr, =2p+2v +szl [(p=pp) ™+ (v=rp)7]
:eflﬁkn\*lﬁkml(cosmk_ Sknsinhz,) (coste, — Sipsinhz) =2u%+217 (B2)
costiz,
where we have neglected terms of the order(u,)? and
X[1+0O(e™ 2By + O(e2Akm)] (v—1)?2 9 der{up)
)<
~0O(e2Bunly, (B1) Now we evaluate the derivative of using Eq.(B2):
where we have made use of H45). Evaluated at=0 the dg, d
right-hand side of Eq.B1) for the casen=k+1 and W=a[—2v§k+k IN4v?—i(8+ +km—2ué)]
m=k—1 has an ordek?, which means that they can be
neglected. The other possible cases, whiesrm|>1 or =—4VMk—i(2ME+2VE+2,LL2+2V2—4MMK)
|[k—n|>1, lead to estimations of still higher order én _ . 5 5
Let us now briefly go into some detail about the deriva- =—Advp—4ivy=2i[(p— )+ (= 1)7]
tion of the CTC, particularly about to the connection be- o SN
tween the old variables, , uy, &, ands, and the new ones =~ Av(pctind=—4n (B3)
gx and p,. We will evaluate the derivative af,. We start ]
with the derivative ofs: If we now use the variableg, and 7, we conclude that
dé d[1d da
E‘&(szl 5p) a7 P (B4)

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. I. [19] D. Anderson and M. Lisak, Opt. Lett1, 174(1986.
Pitaevskii, inThe Theory of Solitons. The Inverse Transform[20] D. Anderson, Phys. Rev. &7, 3135(1983.
Method edited by S. P. Noviko¥Nauka, Moscow, 1980(in  [21] B. A. Malomed, Phys. Rev. A4, 6954(199).
Russiai. [22] I. M. Uzunov, V. M. Mitev, and L. M. Kovachev, Opt. Com-

[2] L. A. Takhtadjan and L. D. FaddeeMamiltonian Approach to mun. 70, 389(1989; 108 392E) (1994.
Soliton Theory(Springer-Verlag, Berlin, 1996 [23] I. M. Uzunov, V. D. Stoev, and T. I. Tzoleva, Opt. Left7,

1417(1992.
[3] J. P. Gordon, Opt. Let8, 596 (1983. [24] N. N. Akhmediev, G. Town, and S. Wabnitz, Opt. Commun.

[4] A. Hasegawa and Y. Kodam&olitons in Optical Communi- 104, 385 (1994).
cations (Oxford University Press, Oxford, 1985 [25] M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana,
[5] G. P. Agrawal,Nonlinear Fiber Optics 2nd ed.(Academic, and G. Bordogna, Opt. Commub08 65 (1994).
San Diego, 1996 [26] K. A. Gorshkov, Ph.D. thesis, Institute of Applied Physics,
[6] S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber Tech- Gorky, 1981(unpublishegt K. A. Gorshkov and L. A. Ostro-
nol. 1, 187 (1995. vsky, Physica B, 428(1981).
[7] Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phgd, 763 [27] J. M. Arnold, IEE Proc. J140, 359 (1993.
(1989. [28] M. Toda, Theory of Nonlinear Lattice§Springer-Verlag, Ber-
[8] D. J. Kaup, J. Math. Anal. App54, 849 (1976. lin, 1981); S. V. Manakov, Sov. Phys. JET#, 543(1974); H.
[9] D. J. Kaup and A. C. Newell, Adv. Mat/81, 67 (1979. Flaschka, Phys. Rev. B, 1924(1974.

[10] V. S. Gerdjikov and E. Kh. Khristov, Bulg. J. Phyg, 28  [291J. Moser, inDynamical Systems, Theory and Applications
(1980: 7, 119(1980; V. S. Gerdjikov and M. 1. lvanov, In- Lecture Notes in Physics Vol. 38pringer-Verlag, Berlin,
verse ,Pr(,JbIems 83i(1992 ' 1975, p. 467; Adv. Math.16, 197 (1975.

! ' [30] V. S. Gerdjikov, I. M. Uzunov, M. Glles, and F. Lederer, in

[11] V. I. Karpman, Phys. Scr0, 462(1979.

. Proceedings of the First Workshop on Nonlinear Physics:
[12] V. I. Karpman and V. V. Solov'ev, Physica B, 487 (1981). g P y

- Theory and Experimentedited by E. Alfinito, M. Boiti, L.
[13] Y. Kodama and K. Nozaki, Opt. Letl2, 1038(1987). Martina, and F. PempinelliWorld Scientific, Singapore,

[14] C. Desem and P. L. Chu, ioptical Solitons—Theory and 1996.
Experiment edited by J. R. TayloCambridge University [31]| M. Uzunov, V. S. Gerdjikov, M. Gttes, and F. Lederer, Opt.
Press, Cambridge, 1992. 127; C. Desem, Ph.D. thesis, Uni- Commun.125, 237 (1996.
versity of New South Wales, 198Tinpublishegl [32] S. P. Khastgir and R. Sasaki, Prog. Theor. PHg5. 485
[15] Y. Kodama and S. Wabnitz, Opt. Left8, 1311(1993. (1996; Y. Kodama, Physica @1, 321(1996.
[16] T. Okamawari, A. Hasegawa, and Y. Kodama, Phys. Rev. A[33] V. S. Gerdjikov and E. G. Evstatiefunpublishedl
51, 3203(1995. [34] V. S. Dimitrov, D. Y. Dakova, and I. M. Uzunov, Opt. Quan-
[17] V. V. Afanasjev, Opt. Lett18, 790(1993. tum Electron.28, 1765(1996.

[18] A. Bondeson, D. Anderson, and M. Lisak, Phys. 2, 479 [35] L. Gagnon and P. A. Belanger, Phys. Rev43, 6187(1991).
(1979. [36] I. M. Uzunov, R. Muschall, M. Gltes, F. Lederer, and S.



6060 GERDJIKOV, UZUNOV, EVSTATIEV, AND DIANKOV 55

Wabnitz, Opt. Commun118 577 (1995. [42] T. Georges and F. Favre, J. Opt. Soc. AmL® 1880(1993.

[37] I. M. Uzunov, M. Gdles, L. Leine, and F. Lederer, Opt. Com- [43] I. M. Uzunov, M. Gdles, and F. Lederer, J. Opt. Soc. Am. B
mun. 110, 465 (1994. 12, 1164(1995.

[38] I. M. Uzunov, M. Gdles, and F. Lederer, Phys. Rev.22,  [44] A. B. Aceves, C. D. Angelis, G. Nalesso, and M. Santagius-
1059 (1995. tina, Opt. Lett.19, 2104(1994.

[39] V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, and E. G. [45] J. Kodama and S. Wabnitz, Opt. Let, 162 (1994).
Evstatiev, Phys. Rev. Letl7, 3943(1996. [46] S. Wabnitz, Electron. LetR9, 1711(1993.

[40] E. A. Kuznetzov and A. V. Mikhailov, JETP LetBO, 466  [47] N. 3. Smith, W. J. Firth, K. J. Blow, and K. Smith, Opt. Lett.
(19949; E. A. Kuznetzov, A. V. Mikhailov, and L. A. 16, 16 (1994

Samokhin, Physica B7, 201 (1995.
[41] I. S. Gradsteyn and |. M. Ryzhiklables of Series, Products
and Integrals(Deutsch-Verlag, Frankfurt, 1981Vol. 1.

[48] Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. L28§.
1981(1992.



