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A PERTURBATION THEORY FOR SOLITON SYSTEMS 

V.I.Karpman and V.V.Solov'ev 

Institute for Terrestrial Magnetism, Ionosphere 
and Radiowave Propagation (IZMIRAN) 

Moscow Region, 142092, USSR 

A simplified perturbational approach appropriate for 
systems of eolitons governed by the perturbed integ- 
rable equations is described. Some applications of 
this method are reviewed. Among them there are soliton 
structure of the shock waves in dispersive media, 
double sine-Gordon equation, etc. 

I. INTRODUCTION 

We consider solitons described by evolution equations of the form 

where %E~] and ~E~] are some operators, & is a small parame- 
ter, and at E = 0 the system can be solved by the inverse scatte- 
ring method (ISM). A general form of perturbation theory for such 
equations has been recently developed in a number of papers tI-9~. 
By means of this theory a general and very complete description 
of a single perturbed soliton and a number of applications was 
considered (see also a review article tlO~ and references therein). 

However, in direct applications of this method to multi-soliton 
systems one confronts with significant technical difficulties ari- 
sing from the necessity to use multl-soliton solutions. Fortuna- 
tely, in many important cases the perturbational effects may be 
considered without going out of the one-soliton perturbation the- 
ory. 

If, for instance, soliton velocities are not so close to each 
other, a time of passing of one soliton through another is small 
in comparison to the time during which the action of perturbation 
becomes to be significant. Therefore, in this case the perturba- 
tion mainly manifests itself when distance between solitons is lar- 
ge a n d  o n e  c a n  u s e  t h e  s i n g l e  s o l i t o n  p e r t u r b a t i o n  t h e o r y  ( a  more  
detailed and quantitative analysis of this case is given in ~10~; 
s e e ,  a l s o ,  b e l o w ,  s e o .  3 ) .  

H o w e v e r ,  i f  t h e  s o l i t o n  v e l o c i t i e s  a r e  r a t h e r  c l o s e ,  t h e  s o l i t o n  
interaction time is large and it may be comparable to the "pertur- 
bation time". In this case there is a significant interference 
between the external perturbation and soliton interaction due to 
their overlapping. Fortunately, it appears that in many of such 
cases the distances between solitons are large and this gives a 
possibility to describe a multi-soliton system as linear superpo- 
sition of single solitons with slowly varyingparameters which can 
be defined by means of perturbational methods. 



V.l. ~arpman and 11: F. Solov'ev / A perturbation theory for soliton systems 143 

The present paper is a review of the main results obtained by this 
approach in [11-15]. 

In sec. 2 we give some general equations used throughout the paper. 
In sec. 3, which is based on [11-12J , we formulate an essence of 
our approach and consider multi-soliton system of the perturbed 
KdV equation (KdVE). Equations describing such system are applied 
then to the theory of oscillatory shocks. In sec. 4 the same appro- 
ach is used for the perturbed non-linear SchrSdinger equation 
(NLSE). Here we give a rather simple description of two unbounded 
and bounded solitons [13, I~. In sec. 5 we consider two-soliton 
systems of the perturbed sine-Gordon equation (SGE) and, as a par- 
ticular case, the double SGE (DSGE) [13, 15]. 

2. BASIC EQUATIONS 

Here we give some general results following from the perturbation 
theory based on the ISM. Consider, first, the perturbed KdVE 

bb~ - 6L, LbLz 'r 1Z~c~¢3c = &~)~.[ IX] ( 2 . 1 )  

where it is assumed that 

u.---.,.0, P.. t~]--- ' -  0 (,~1---~ o~) (2.2) 
Evolution of one perturbed soliton is described by the equations 
~2, 4, ~, 8] 

LLC~,-~) = L, Ls(~_, K(-O ) -,- F~.(~,~), 

where 

As for the ~(~) , describing the modification of soliton 
shape, we discuss here only its tail part ~4,7. 8~ (in [8] , in- 
stead of tail, the term "shelf" is used). It was found that~t(~,~) 
transforms into almost flat tail behind the soliton at a few soli- 
ton lengthes K -i , and if we denote the height of the tail as 

F ~  <-~ , one has [7] 

oc-'~ c - ~ -  ~,~c~(a), (2.'r) 
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Consider now the perturbed NLS and SG equations 

(2.8) 

whioh are related to the following eigenvalue problem 

(2.11) 

(2.12) 

and ~(r,{) in (2.10) is connected with ~(~,{) as 

, & ~ (2.13) 

To the same eigenvalue problem the modified KdVE is related. Ho- 
wever,it is not considered here, because for real~(~)the results 
are very similar as those for KdVE, and for complex ~(~,{) the 
physical applications are rather obscure. 

Single soliton solutions of the unperturbed NLSE and SGE are des- 
cribed by ~(~,~) having the form 

(2.14) 

and 
upper half-plane 

For SGE, bt s (~,£) is real, i.e. in one have to assume 

/x, l  = o , ~" = O ,  OT 

Then from (2.14) and (2.13) one has 

[ ~s] has only one eigenvalue of discrete spectrum in the 

(2.16) 

(2.17) 
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-~ [~,~ (2 .18 )  

= ~2~" = .+.] } ~ = ~ t. ( 2 .19 )  

If & ~ O, all soliton parameters,/~ , 9 , & and ~ change 
with time according to [1-3, 7-9] 

~-T- = #~ }  
( 2 .21 )  

where 

~(¢) ¢a¢) -~ 
= (SG) (2 .23 )  

N[~] = L ~  ~ - ~ (2.24) 

' • ~ 'coaa ~- olin (2.26) 

Z~ [uq - a ,  

A t  ~ = 0 o n e  o b t a i n s  f r o m  h e r e  t h e  w e l l  k n o w n  e q u a t i o n s  f o r  t h e  
unperturbed solitons [16, 17]. 

For the perturbed SGE these equations are reduced to the two fol- 
lowlng 
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= o--- 

(see also [ 1 8 ] ) .  

For the perturbed equations one should add to d ( ~ , ~ )  a variation 
of soliton shape ~(~*) which has been investigated in the 
above mentioned papers ~I-I0]. We do not consider it here because 
in all cases under discussion it gives no important for our prob- 
lem physical effects. 

3. MULTI-SOLITON SYSTEM OF THE PERTURBED KdVE. 
OSCILLATORY SHOCK WAVES 

Consider, first, a two-soliton system governed by (2.1). From 
(2.5) 

I 

we observe that a characteristic perturbation time scale t~ 
for a single soliton is defined by 

) 

Here { s  = ~ - s  i s  t he  u n p e r t u r b e d  s o l i t o n  t ime s c a l e .  I t  i s  a 
t ime  i n t e r v a l  d u r i n g  wh ich  an u n p e r t u r b e d  s o l i t o n  passes a d i s t a n -  
ce ~ l( - i  . 

If one has two solitons with significantly different amplitudes 
( ~K =~z-K~L ), the time of passing of the fastest soliton 
through the slowest one is of the order of %s . As far as %s~<{~ 
(%~/{p is the main parameter of the perturbation theory [4, 7]), 
soliton interaction during the overlapping process has no impor- 
tant interference with effects of external perturbation. However, 
such interference may be significant if ~ << K.,~ . That is why 
here we cbnsider only this case. The perturbation theory based on 
the ISM requires calculation of some matrix elements containing 
the two-soliton solutions. This is very difficult to realize, es- 
pecially for small YK , the most important case. 

However, in this case there exists another, much simple, way based 
on the observation by Zabusky and Kruskal [19] and analysis by Lax 
[20]. They have shown that two-soliton solution of the unperturbed 
KdVE at ~ K ~ K~,~ can be approximately presented as superposi- 
tion of two single solitons with slowly varying amplitudes. These 
solitons, f~st, draw together, up to some minimal distance of the 
order of K~IK/K4-KLI , and then slowly diverge. A simpli- 
fied perturbational approach based on this picturewas developed 
in [21] where some interesting results were obtained. We use here 
a different method [113 which gives possibility to take into acco- 
unt, in a simple way, effects have not been considered in [21], 
such as soliton tails and corrections to soliton velocities, which 
are important for applications considered below. 
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Consider a chain of sol,tons, centered at ~ ( ~ = 
and assume g~ > ~ ÷ ~  

II eeel , 

and let us look for a solution of eq. (2.1) of the form 

where ~ are written in (2.3), ~-gt~_) describe "tails", and 
sol.ton parameters K - -  K,,(~) and ~ ~ ~.(.~) should satisfy 
eqs. (2.4)-(2.6) where ~ ~[~s~ is replaced by 

vi. ~.{ 

The first term here describes the external perturbation (e.g.. dis- 
sipation), second and third terms describe interaction of the ~ -th 
sol,ton with its neighbours, and the last term appears due to the 
influence of tails of ~-i first sol,tons on the ~ -th sol,ton. 
If, in addition. 

Iv.~,-i/,,_~l~.. << L,  v,.~.., >> i (3.3) 

t h e n  e q u a t i o n s  d e s c r i b i n g  e v o l u t i o n  o f  s o l . t o n  s y s t e m  t a k e  a fo rm 
t11, 12] 

# # 

<l z,-4 - & AN, (3.5) 

(3.6) 

,,4-'t 

k---i- 

(3.?;) 
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2_ 2_ d~/d-I :  =/-/KN -+'iiZK eJ'~p(-z.K,j_~_ZN_{) N-{ 
~-::L ( 3 . 8 )  

2_ 

/ =4  

~ e r e  A(v.) , 8(v_) and 0~(<) are d e f i e d  in (2 .5) ,  (2 .6) ,  and 
( 2 . 8 ) ,  a n d  m = 2 ,  3 ,  . . . ,  N-'L • 

At & = O and N = 2 we come, in particular, to equations for two 
interacting solitons which leads to the same results as two-soli- 
ton solution of the unperturbed KdVE (details are given in [11] ). 

Consider now under which conditions the soliton system might be 
stationary. For that one should require 

ol - o J - - V -  ( 3 .9 )  

where ~ is a common velocity of the system. Applying (3.9) to 
= I, 2, ..., ~-~ and using (3.4)-(3.8), we obtain 

- t  - -  ' (3.10) 

p . 3&A~ 3&~,~ K,,, 
(3.11) 

However, one sees that 

4 : 0  > 

for any E~[ bl~ . Therefore there does not exist such external 
perturbation (with small 8 ) which could provide a stationary 
state of KdV solitons for N ~ ~ . However, at large N , condi- 
tions (3.10) and (3.11) define a quasistationary state of soliton 
system with the time-life increasing with N . Indeed, let condi- 
tions (3.10) and (3.11) to be hold for ~ = I, 2, ..., N-i , at 
some t= ho. Then for ~ > %o the system would decay because they 
are not satisfied for ~ =N . However, the decay is the slower, 
the larger N • 

The system might be stationary if, apart of external perturbation 
~ [~ , there exists some other external force which compen- 

sates a tendency to the decay. Such situation is realized in a sta- 
tionary shock wave, where a piston moving with constant velocity 
plays a role of the external force. Thus, one comes to conclusion 
that soliton system satisfying the conditions (3.9)-(3.11) may form 
a front part of a stationary shock described by (2.1). Let us elu- 
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cidate some relations describing a structure of such shock E12 ] .  

From eq. d~ /~ =V , with ~r as a shock velocity, one has 
for the front soliton in the shock 

÷ 2::-/ 

The amplitudes of subsequent solitons and distances between them 
are defined by eqs. (3.10) and (3.11). If the external perturbati- 
on such that 

(this is assumed thro.ughout this section), then all p~ > O (i.e. 

Now define the shock profile as ~(~) = - ~C~,{) . Then soli- 
ton peaks correspond to the maxima ~ , and 

LF,~ - q.~-~ ~ -  ~ ,~A~- , I  -I-~,£ z (3 14) 4 ~ ~ , ._ :  K.,,_~ < 0 " 

Eqs. (3.10)-(3.14) give a complete description of the front part 
of the shock which may be considered as a sequence of solitons 
(Fig. I). 

i I 

Figure 1 
A Profile of the Oscillatory Shock Wave 

Conditions of applicability of obtained relations are 

i 
(3.~5) 
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which are necessary for applicability of our approach. They are 
violated in the back part of the shock where pulsation amplitudes 
are small. This part can be investigated from different point of 
vie@. By putting into (2.1) 

we have ~o 

At z-~-~ one obtains 

In the back part of the shock, the difference @(~)- ~(-~) des- 
cribes small oscillations which should damp at ~-~-~ . A con- 
dition of the damping, and a convergence of the integral in (3.16) 
put some restrictions on the external perturbation ~[u], necessa- 
ry for the existence of the shock. A more detailed analysis of con- 
ditions of the existence of the shock is given in ~11~ (see also 
references therein). 

As a simplest and important example, consider the KdV-B equation 
(i.e. ~ = &~/~ ~ > O ). Then from the above written we have 

- o I o .  

t~.+~ ~ <~- z z ~  K ~ , ~ 5  ~-) (3.~9) 

From (3 .18 )  an~ ~3.19) one s e e s  t h a t  a number of  s o l i t o n s  i n  t h e  
shook is of the order of i~/E . In particular, at wL = ~/2& 
wehave 

K~/K I ~  0.75, T~= 2.36K~ , ~ = 1 .36M~ (3 .20 )  

It is interesting to note that ~ in (3.20) is very close to %he 
limit value ~(~) from (3.16), which is 

~-(- ~ ) i =  1.33 ~ 

4. A TWO-SOLITON SYSTEM OF THE NLSE ~13, 14~ 

Following the method outlined in the previous section we look for 
the solution of eq. (2.9) in the form 

~(~)~) = ~)~) + ~&(~, 4) (4.1) 

where 



V.I. Karpman and I1. I~. Solov'ev / A  perturbation theory for soliton systems 151 

(4.2) 

an& it is assumed that ~ = ~.(4) and~ =~({) , together with 
~(~I and ~(~) are slow functions of time ( ~ = I, 2). 

Suppose, first, that h = O. Then, to define the unknown functi- 
ons, we have to solve eqs. (2.20)-(2.22) and (2.24)-(2.27), where, 
instead of &~[~ , the following expression should be taken 

~ ~ ~ = ( ( ~  ~ ~a) (4.3) 

~u, ~ = I, 2 nt@~ . (4.3) describes action of the ~t -th 
solito~ on the '¢~-th one due to their overlapping. After calcula- 
ting the corresponding integrals, one has 

JG-- 

with the notations 

, 

and it is assumed that k > 0 , and, also, 

(4.4) 

(4.5) 

(4.6) 

(4o7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Let us, also, define 

As it will be seen from the solution obtained below, the conditi- 
ons (4.10) are necessary in order to soliton parameters change 
slowly. Condition (4.11) is introduced to simplify computations. 
It is not an essential restriction, because terms describing soli- 
ton interaction may be neglected at the distances Z ~ L~4-~zl -£ • 
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p = 9 z - "d~ ) 

Then it is possible to show that eqs. 
wing constants of motion 

, ~  = ~ o ~ s ÷  ~ 0 = c o r u ~ £  

=~_-/ .~,  '~ =q~ .~p (4.12) 

( 4 ,4 ) - ( 4 ,7 )  have the f o l l o -  

(4.13) 

~)~ (4.14) 

where ~/~ is a complex constant. Using this relations one can de- 
duce from (4.4)-(4.7) the equation 

~ljC --A2) 0 (4.15) 

which has the solution 

~j/ = - A  {O,,,~k(2"~Z/~_lu - 4 t  - i dz /  (4.16) 

where o(~ and od~ are real constants. Introducing the notation 

.A_ ~ m_ + ~rb ( 4 . 1 7 )  

a~d calculating real and imaginary parts of (4.16), one has 

- c . o s k ( 4 w 4 : - 2 ~ ) ,  oos(zl~rLt-2_~) (4.1a) 

? ('t:) -- -- COs, H.(Z/~ ¢i~k {_ 2..d,l/_f_ C0£ (Lt 9 i, tJc _Z4z ) (4,,19) 

From eqs. (4.4)-(4.7) one can deduce, also, 

2o r 

Integration gives 

'~(4) 
Go £],1.2d 4 ff COS 2dz_ 

(4.20) 

(4.21) 
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(4.22) 

Before an examination of these equations we point out that, accor- 

d ing to direct calculations performed in [14] under conditions 
4.10) and (4.11), the eigenvalues ofL[a~ , corresponding to 
(4.1) and (4.2), have the form 

We s t r e s s  t h a t  t h i s  e x p r e s s i o n  h a s  b e e n  o b t a i n e d  w i t h o u t  u s e  t h e  
equations of motion and, therefore, it is valid for g ~ O, as well 
as for 6 = O. However, in the last case it depends only on cons- 
tans of motion, in accordance with ISM. Consider now three cases. 

(i) ~I ~ O. Without loss of generality one can assume that 
Then from (4.14) it follows 

P / ~6~ ~ ~ 

oCA= O. 

(4.24) 

(4,25) 

We see, also, that for ~-~ ±=~o 

Thus, ~_~ this case solitons are brought together from infinity up 
to some minimal distance ~~(o) and after they diverge, 
i.e. the case under consideration corresponds to collision of two 
unbounded solitons, and for i ----±~ one has 

(4.27) 

These relations, together with (4.23), are in complete agreement 
with the exact two-soliton solution of NLSE. Defining asymptotic 
values at ~ --~ -+ 

one has 

(4.28) 
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£°7 ,t+'- (4.29) 

These relations define position and phase shifts of solitons at 
t--*±~ caused by their interaction. They coincide with those 
following from the ISM [16] if 

m~<'~ 1~2.1< ~ (4.30) 

It is easy to see that conditions (4.30) provide fulfilment of 
(4.10) and (4.11). Therefore we conclude that, within the scope of 
our approximations, our results are in full agreement with the ISM. 
Plots of relative soliton velocity at ~b ~ 0 are shown in the 
Fig. 2. One can see that soliton approach and divergence have an 
oscillatory character. 

~ j~ -  

4 

_~- _z/ -~ -z /  -,l. ~ ~. 

-2 

# Y 

-3 

_ L/ 

Figure 2 
Plots of(il~)~ for ~ ~ 0 (~= O, ~ = 0.25) 

(ii) ~ = O, Wb ~ O. In this case, without loss of generality~ 
one can put ~= O. Then eqs. (4.18), (4.19), (4.21) and (4.22) 
give 
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(4.31) 

(4.32) 

(4.33) 

(4.34) 

i.e. relative aoliton velocities, their phases and distances bet- 
ween them, oscillate with the period 

T = z~ i~l- (4.35) 

m'~d 

Therefore at ~t = O, i.e. ~ t ~ - - ~  , we obtain a bound soli- 
ton system, again in accordance with the ISM. However, the case 
considered here is different from breathers which are usually ex- 
tracted from the general two-soliton solution of the NLSE, because 
we have nora one "breathing" pulse but two oscillating solitons. 

(iii) ~ = O, ~b = 0 (i.e.~ = 0). This case corresponds to de- 
generate eigenvalu?: ~ L  . To analyse it by our approach 
we solve eq. (4.15) at ~ = 0 to obtain 

y 
where ~ is an integration constant which may be considered as 
real, but ~G ~ O. Calculating ~ and ~ we have 

From that it follows 
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(4.38) 

(4.39) 

(4.40) 

Therefore, in this case solitons move monotonically from ~ =~ 
to ~ and then diverge, and the distance between them varies 
as ~tl 

In a similar way one can consider a two-soliton system under extez~ 
nal perturbation. Por that one have to add to (4,3) the term 
&M-[~] describing an external perturbation. This results in ad- 
ding to the r.h. sides of eqs. (4.4)-(4.7) additional terms: 
EM[~] , &~[~] , &-~[~] , and ~b[~] which are de- 
fined by (2.24)-(2.27). The equations obtained in such a way are 
investigated in [13, 14S and will be published elsewhere. Here we 
only mention the following consequences. Quantities/~ , 9 , WL , 
and ~ are no more constants of motion. Therefore, the eigenvalu- 
es of ~ , which are still expressed by (4.23), also change in 
time. If an external perturbation is such that d wt/~T ~ 0 , the 
bound soliton state may be destroyed. 

If perturbation is so that the period (4.35) is much less than per- 
turbation time ~p , one can average over the oscillation period 
of bound system, and if 

~ i'l% / ~  -~0 (4.41) 

then the bound state may be considered as conserving untill the 
averaging proqedure is Justified. In many cases, however (examples 
are given in [13. 14j ), ~-~/~{ < O , along with (4.41). Due 
to that rb decreases and, at appropriately small ~ , the peri- 
od (4.35) becomes to be comparable to ~p , and, so, the adiabati- 
city condition breaks, and averaging has no more meaning. In gene- 
ral, this is the end of the existence of bound soliton system. Phe- 
nomena of such type have been observed in numerical simulations 
[22]. 

5. TWO-SOLITON SYSTE~ OF THE PERTURBED SGE 

As in previous cases we look for the solutions of the perturbed 
SGE in the form 

= (5.1) 

where 

(5.2) 
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~--/~ = + 1, ~ = + 1, ~ = L g ~ ) [ ~ - ~ ) ]  ( ~'t = 1, 2 ) ,  and 
9d~/ -, ~1 ~ a~e s low f u n c t i o n s  o f  ~ . A t  ~ = 1 we have 
k i n k - k i n k  sys tem,  ~ .d  a t  ~ [ ~  = -1 i t  i s  k i n k - a n t i k i n k .  We can 
a l s o  c o n s i d e r  them a s  t w o - s o l i t o n  s y s t e m s ,  because  t o  each  i r (~ , e )  
c o r r e s p o n d s  q u a n t i t y  ~ ( ~ % )  , d e f i n e d  by ( 2 . 1 3 ) ,  which  h a s  a 
e o l i t o n  f o r m .  I t  i s  i m p o r t a n t ,  h o w e v e r ,  t h a t  o f t e n  p e r t u r b a t i o n  
t e r m s  depend  on ~ and ,  t h e r e f o r e ~  a d d i t i o n a l  c o n s t a n t s  ~ ,~ -  a r e  
significant. 

TO obtain equations f o r  %~],na &~Ct) we use ( 2 . 2 8 )  and (2.29) 
with the following change 

Here E~i ~ describes soliton interaction due to overlapping and 
£~[~] in the r.h.s, of (5.3) corresponds to external perturbation. 
It is easy to find 

?.. 

z_ (5.4) 

As before, we introduce the notations 

= v p= (5.5) 

and assume 

Ip~<<~ 9Z>>/-, I p I z - -< i  

Then the basic equations take the form 

(5.6) 

• ~"  -29Z I 
dJc 

The elgenvalues of "k~ ~[] , corresponding to (5.1) and 
U s ]  

i. ~p~ + t6<,...,~,..e..,,z.p(_a,t i £sa: t9 <- X 

where 

Prom (5.7) and (5.8) it follows that at 6 = 0 

(5.7) 

(5.8) 

(5.2), are 

(5.9) 

(5.1o) 
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(5.11) 

dt /d4=  = p / z ~  ~ (5.12) 

~p/~Jc -~ ~4z ~__~29,7_. (5.1.3) 

These equations have am integral of motion 

(5.14) 

Exactly this quantity appears under the square root in (5.9) and 
this ensures a constancy of eigenvalues, in agreement with the ISM. 
From (5.14) one sees that solitons are repulsed (attracted) at 

~ = 1 (-I). A character of soliton motion is clear from the 
Fig. 3. 

At ~L = -1, const ~ O, soliton distance oscillates with amplitu- 
de 

{I 

However, in this case the solution (5.1) is valid only in the vici- 
nity of the turning point (and under the condition ~o ~ 1), 
because our approximation breaks at 9~ ~.~ 1. From (5.9) one has 

~4,~ =(9 +-29 ~ 9 ~  ( ~42_ = -1) (5.16) 

where p(%)= 0 and Zo is maximum (minimum) distance between so- 
litons at "~ = -I ( ~z = 1). 

From (5.12)-(5.14) one has ( ~ = I) 

(5.18) 

(5.19) 

(5.20) 

Conditions 9~ o >> 1 and p/9 ~ 1 are realized at 

(5.21) 
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If one defines the asymptotics 

t h e n  
C ~ ~ +-~)  

° 29  (5 .22 )  

It can be shown that this equation is completely equivalent to the 
relation between shifts of soliton positions due to their collisi- 
on, which follows from the ISM. 

Returning to the perturbed SGE we consider the DSGE 

SiYL~ (5.23) ~ , *s~ l~  - z 

which have been already investigated in a number of papers (e.g., 
[23-26] and references therein). Eq. (5.23) is usually treated by 

~ erturbation methods with A as a small parameter. Taking in 
5.7) and (5.8) 

- -~ ~ ~ (5.24) 

one has ( lq~ = 1, 2) 

d ~ _ ~ , i ~ ~ z  (5.26) 

Prom (5.25) and 
still valid (as 

(5.26) it follows that eqs. (5.11) and (5.12) are 
for ~ = 0). Instead of (5.13) one has 

(5.27) 

Prom (5.27) and (5.12) an "energy" integral follows 

-~ p~ + 1~(~) = E 
with "potential energy" 

We see that in the presence of perturbation ~(~) 
mum i n  the point ~ 

(5.28) 

(5.29) 

has an ex t re -  
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(5.30) 

(5.31) 

(Here and below is assumed ~ = I, k > 0). A plot of ~(T) is 
shown in Fig. 3. One sees that, at ~ = I, perturbation leads to 
bound states of solitons which are impossible at X = O. At 
G~ = -1, the perturbation only results in some modification of 

breathers and in diminishing of a region of their existence. 

E 

E. 

E 

Figure 3 ~ - -z9% 
Potential Energy of Solitons ~(~)~ ~L(~e , A~L~ 

a) ~= I, b) ~z= -1. Dotted Lines Correspond 
to ~(~)at & = 0 

A difference between these cases is also in eigenvalues of (2.11). 
(It is naturally, that at ~ ~ O, the eigenvalues depend on 

--p~#~) ) In particular, ct the turning points ~ = ~ , where 
- ), 

We see that at 5~4L = 1 eigenvalues are purely imaginary in the all 
region between the turning points ~4~ ~ ~ Zz . At ~ = -1 one 
should distinguish two regions. For ~ ~ b~ the eigenvalues are com- 
plex with opposite signs of the real part. At some ~ > ~ the real 
part of ~4,~vanishes, i.e. the system decays into two diverging 
solitons (see also the end of the paper). 
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In the equilibrium points, ~ = '~.,,~_ , the system is described by 
stationary solutions of eq. (5.23) which have the form 

where, according to (5.26) and (5.30) 

(5.33) may be considered as soliton-like solution of the eq.(5.23) 
satisfying the boundary conditions 

> o L 

However, at ~ = I the soliton (5.33) is stable and at ~z = -I, 
it is unstable. 

It is interesting to note that if one looks for an exact stationa- 
ry solution of eq. (5.23) in the form (5.33), with ~ = const, 

~.~= const, then for ~ one obtains 

= + (5.35) 

In the first order of k/~ , its solution gives (5.30). As for 
one obtains for it exactly (5.34). It is important that even for 

= 1,it is a good agreement of our approximate expressions with 
the exact ones. 

The case C~ = I corresponds to conditions considered in ~25] and 
~ = -I to K23, 24, 2~, where similar results have been obtai- 

ned by different approach. 

And, finally, we present solutions of DSGE which are close to sta- 
tionary ones (their derivations are given in ~15]). 

At ~ = I (kink-kink), the solution corresponding to harmonic os- 
cillations of solitons near the equilibrium point ~ can be 
written as 
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where 

( 5 .37 )  

Here ~ and ~ are amplitude and frequency of soliton oscilla- 
tions 

- z~ = ~ s L V L 2 , { ,  & = T , ( 5 . 3 9 )  

and it is supposed a0 ~< 1. At & = 0 formula (5.36) reduces to 
the stationary solution discussed above. 

At ~ = -1 (kink-antikink), we have a solution describing a stab- 
le breather 

(5.40) 

where 

i 

This solution corresponds to solitons oscillating in the potential 
well (Fig. 3b), and parameter ~ is expressed through the turning 
point %1 by 

~1.-- T - (5.42) 

In derivation of (5.40) 
see that at ~4 = ~u 

it was assumed X ~< 1. From (5.42) we 

(5.43) 

In this case )~/4~ ~ = I and (5.40) takes a form 

(5.44) 
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It is easy to check that (5.44) is exactly equivalent to the sta- 
tionary solution (5.33) at O~4L = -1, as it should be. 

In the opposite case 

z/,t~- (5.45) 

thesolution (5.40) is very close to the unperturbed breather of 
SGE. 

Consider now solutions corresponding to the case when distance 
between the kink and antikink % > ~2_ • Then from (5.9) one has 

+ L~-29Zz Z k ~(Z- Zz)~ (5.46) 

If one introduces "a critical distance" ~cr 

then 

(5.47) 

In the point ~ = ~¢x ~ the system decays into two independent di- 
verging solitons. At ~ >> Zcr , evolution of them may be des- 
cribed by eqs. (5.25) and (5.26) where terms with e4cp(-lg~.) are 
neglected, i.e. 

These results are in good agreement with the numerical analysis 
given in [24, 263. 
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