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Abstract

We analyse the drift of an optical vortex soliton created on a slowly diffracting, finite-extend background field. In the
framework of the generalized nonlinear Schrodinger equation we derive the motion equation describing the change of the¨
vortex velocity induced by local gradients of the phase and intensity of the background field. We present experimental
measurements of the motion of a vortex soliton, created by a phase mask in a diffracting Gaussian laser beam passed through
a nonlinear saturable medium. The experimental results are shown to be in good agreement with our theoretical model and
corresponding numerical simulations carried out for both Kerr and saturable media with experimentally determined initial
conditions. q 1998 Elsevier Science B.V. All rights reserved.

PACS: 42.65.Jx; 42.50.Rh; 42.65.Hw

1. Introduction

Spatio-temporal evolution of light in nonlinear media
and stable propagation of temporal and spatial optical
solitons have been subjects of considerable theoretical and
experimental research in nonlinear optics during recent
years. Localized solutions of the nonlinear propagation
equations when a background wave is modulationally sta-
ble are dark solitons, observable as intensity dips within a
uniform background. Temporal dark solitons described by

Ž . Ž .the 1q1 -dimensional one temporal and one spatial
Ž .nonlinear Schrodinger equation NLS have been predicted¨

w xtheoretically 1 and subsequently observed in optical fi-
w xbres 2 . The spatial analogues of these dark solitons were

also observed experimentally as spatial dark stripe solitary
w xwaves in a bulk nonlinear medium 3 . Despite strong

similarities between dark stripes and their temporal rela-
tives, the stripe differs from the temporal soliton in that it
is unconstrained along the extra transverse spatial dimen-
sion, whereas the temporal soliton is confined by the fibre

in higher transverse dimensions. Linear stability analysis
w xdeveloped for a defocusing Kerr medium 4 shows that a

Žspatial dark soliton stripe is unstable to transverse long-
.wavelength modulations. This transverse modulational in-

stability has been already observed experimentally for
w x w x 1saturable 5 and photorefractive 6 media . In the

strongly nonlinear regime, the instability leads to the gen-

1 w x ŽThe authors of Ref. 6 claim that the transverse or ‘snake-
.type’ instability should always exist for photorefractive solitons.

Ž w x.However, the recent theoretical results see Ref. 19 suggest that
the transverse instability of a soliton stripe is suppressed in a
saturable medium, as it should be for the case of photorefractive
solitons. Therefore, the instability reported by Mamaev et al. may
be also associated with the increase of nonlinearity beyond the
threshold of soliton formation. It should be also noticed that the

Ž .existence of stable and robust 1q1 -dimensional soliton stripes
in a photorefractive medium has been demonstrated independently

w xby Z. Chen et al. 7 .
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eration of pairs of optical vortex solitons with alternating
Ž .polarities. The instability induced evolution of 1q1 -

dimensional stripe beams and generation of vortices have
w xbeen investigated both numerically 8,9 and using asymp-

w xtotic analytical theory 10 .
Optical Õortex solitons are stable stationary structures

which exist in a defocusing bulk nonlinear optical medium
on a uniform background. Vortex soliton solutions of the
Ž .2q1 -dimensional cubic nonlinear Schrodinger equation¨
were introduced and analysed in the pioneering paper by

w xPitaevskii 11 as topological excitations within superflu-
ids. In the context of nonlinear optics, they were theoreti-

w xcally suggested by Snyder et al. 12 and experimental
observations of optical vortex solitons have been reported

w xby several groups 13–21 for different optical materials.
In experiments, however, vortex solitons are observed for
different types of initial conditions. So far, the vortex
solitons that reside on ‘infinite’ background beams have

w xbeen only generated by Z. Chen et al. 17,18 . In most of
the other cases, the vortex solitons have been created by
finite total energy and reside within the nonuniform back-
ground. As a result, vortex motion is observed to be
strongly dependent on the inhomogeneities in the back-
ground field, diffracting even stronger in the presence of a
defocusing nonlinearity. This is quite different from what
we can learn from the theory of vortex solitons. Indeed,
the theory of optical vortex solitons developed to date

Žassumes a background of constant amplitude analogous to
.fluid incompressibility , and is unable to capture a number

of interesting features of vortex dynamics, e.g. the drift
and rotation of a vortex around the beam center – effects
which also exist for linear propagation but become depen-
dent on light intensity in the nonlinear regime. Understand-
ing this dynamics is important for future application of
vortex solitons in steerable all-optical switching devices
based on the concept of light-guiding-light.

In this paper we develop, for the first time to our
knowledge, a theory of optical vortex motion on an inho-
mogeneous background field and compare our analytical
and numerical results with those obtained experimentally.
The theory we suggest here is rather general, and it can be
applied to different physical situations when the back-
ground field evolves slowly in comparison with the vortex
parameters. However, in the present paper we concentrate
on the case of a diffracting background beam which can be
easily verified experimentally and numerically.

The paper is organised as follows. In Section 2 we
begin with the generalised NLS equation which is the
model characterising our physical system. Looking for
localised vortex solutions within a slowly varying field, we
derive a nonlinear equation that allows the effects of
background non-uniformity to be incorporated into a prob-
lem of the vortex motion, induced by gradients of the
background field. The resulting equation is similar to a
previous analysis carried out in the context of a superfluid

w xmodel 22 . In Section 3 we apply the method of matched

asymptotic expansion to derive an equation of motion for
the vortex core. The equation of motion is readily inter-
preted and is shown to describe the behaviour seen in
experiments and simulations. In particular, it predicts the
source of vortex radial drift and rotation in a beam to be
due to background gradients of phase and intensity respec-
tively. In Section 4 we discuss experimental results and
compare them with theory and numerical simulations,
demonstrating a reasonably good agreement. Finally, a
discussion in Section 5 summarises and concludes the
paper.

2. Model

We consider the propagation of a monochromatic scalar
electric field EE in a bulk optical medium with an

Ž .intensity-dependent refractive index, n s n q n I ,0 nl

where n is the uniform refractive index of the unper-0
Ž .turbed medium, and n I describes the change in thenl

< < 2index due to the field intensity Is EE . In the so-called
paraxial approximation, Maxwell’s equations can be re-
duced to the generalised NLS equation for the slowly

Ž . Ž . Ž .varying envelope E z,r sEE z,r exp ik n z of the elec-0 0

tric field,

E E
2y2 ik n q= Eqg I Es0, 1Ž . Ž .0 0

E z

where k is the free-space wave number, n is the linear0 0
< < 2refractive index, Is E is the beam intensity, and = is a

gradient operator defined with respect to the transverse
Ž . Ž . 2 Ž .coordinates rs x, y . The function g I s2k n n I0 0 nl

describes the nature of the nonlinearity, and is determined
Ž .by the intensity-dependent correction n I to the refrac-nl

tive index. Analysing the modification of a vortex soliton
by a variation of the background field, we look for solu-

Ž . Ž w xtions of Eq. 1 in the form see Ref. 23 where a similar
.approach was used for a dark soliton

iu bE z ,r s I e Õ z ,r'Ž . Ž .b

and assume that the background field with the intensity
Ž . Ž . Ž .I z,r and phase u z,r satisfies Eq. 1 . This yields theb b

Ž .equation for the auxiliary field Õ z,r ,

E Õ
22 < <y2 ik n q= Õq g I Õ yg I Õsy=ÕP f ,Ž .Ž .0 0 b b

E z
2Ž .

where the complex vector f is defined by the evolution of
the background field,

fs f r q if i '=ln I q2 i=u , 3Ž .b b

< < <and the boundary condition Õ ™1 applies for large ry
<r , where the position of the vortex core r is defined as0 0
Ž .Õ r s0.0
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In the particular case of a defocusing Kerr medium, i.e.
Ž . Ž .when n I syn I, Eq. 2 takes the form of a perturbednl 2

NLS equation

E Õ
22 2 < <y2 ik n q= Õq2k n n I 1y Õ Õsy=ÕP f .Ž .0 0 0 0 2 b

E z
4Ž .

In the derivation that follows, we use this perturbed form
of the NLS equation to describe the evolution of the
auxiliary field, and thereby obtain an equation of motion
for the vortex core.

3. Vortex equation of motion

In this section, we apply the method of matched asymp-
totic expansions to the analysis of a slow vortex motion in
a shallow gradient of the background field. The expansion
near and far from the vortex core will be followed by
asymptotic matching at an intermediate distance. We

w xmostly follow a similar analysis in Ref. 22 that, in its
turn, draws on the application of the same technique in

w xother settings 24–26 .

3.1. Asymptotic expansion near the Õortex core

We assume that the function Õ describes a vortex with
Ž .the centre coordinate r z , and the fields I and u vary0 b b

slowly in comparison with the vortex scales. This means
that gradients of these fields produce a small parameter e .
It is expected that the shift of the vortex will be of the
same order of magnitude. Then, the problem is to describe

Ža change of the position of the vortex i.e., the so-called
.Õortex drift for the field Õ under the action of these

slowly varying background fields. To clarify the idea of a
‘background field’, one may picture it as the field which
would exist if the vortices were somehow removed. We
rescale to dimensionless coordinates by using the value of
the slowly Õarying background field at the vortex centre,

Ž . Ž .I s I r , so that z ™ yzr k n n I and r ™0 b 0 0 0 2 0
Ž . < < Ž .rr k n 2n I rn , then set fse F where F sO 1 .'0 0 2 0 0

Ž .In this case Eq. 4 becomes

E Õ Ib 22 < <i q= Õq 1y Õ Õsye=ÕPF , 5Ž .Ž .
E z I0

where F has also been rescaled. The vortex velocity, in
this new coordinate scale, is assumed to be small, produc-
ing the same small parameter e as the background gradi-
ents, so that

d r0
swseV , 6Ž .

d z

< < Ž .where V sO 1 .
Ž .Next, we solve Eq. 5 in the vicinity of the vortex core

in the reference frame moving with the vortex drift veloc-
ity w. Since the background field does not change signifi-

cantly on the scale of the core, the term I rI should beb 0

expanded as

< rI rI f1qrP=ln I '1qe rPF , 7Ž .rsrb 0 b 00

where the rescaled complex vector F is calculated at the0
< Ž .position of the vortex, F 'F . Thus, Eq. 5 becomesrsr0 0

22 < <= Õq 1y Õ Õse iVyF P=ÕŽ .Ž .
2r < <yrPF 1y Õ Õ . 8Ž .Ž .0

We expand also the field Õ as ÕsÕ qe Õ q . . . and0 1
Ž .substitute the asymptotic series into Eq. 8 . In the zero-

order approximation in e we find the standard nonlinear
Ž .stationary cubic NLS equation which defines the vortex
profile

2 < < 2= Õ q 1y Õ Õ s0, 9Ž .Ž .0 0 0

so that, in the polar coordinates of the moving frame, its
solution is given by the expression

Õ sr r e imf 10Ž . Ž .0

Ž .where ms"1 is the vortex charge polarity , and the
Ž .function r r that verifies

d2r 1 d r 1
2q q 1y yr rs0 11Ž .2 2ž /r d rd r r

is the well known vortex amplitude profile, first studied in
w x Žthe superfluid context, and known numerically 11 see

w x .also Ref. 27 and references therein .
The first-order approximation yields the inhomoge-

neous equation,

LL Õ ,Õ) sC r 12Ž . Ž .Ž .1 1

with the homogeneous part

) 2 < < 2 2 )LL Õ ,Õ s= Õ qÕ y2 Õ Õ yÕ Õ , 13Ž .Ž .1 1 1 1 0 1 0 1

and the right-hand-side part

r < < 2C r s iVyF P=Õ yrPF 1y Õ Õ . 14Ž . Ž .Ž . Ž .0 0 0 0 0

Ž . Ž .Using Eq. 10 brings Eq. 14 to the form

m 1 d r rŽ .
C r s r r Vq iF =rq iVyF PrŽ . Ž .Ž . Ž .2½ r d rr

2 r imfy 1yr r r r F Pr e . 15Ž . Ž . Ž .5
We omit here the index ‘0’, presuming that the value of
the effective ‘force’ F is taken at the vortex core, rsr .0

The solvability condition of the first-order equation
Ž . Ž .12 , 15 means the orthogonality of the inhomogeneous

Ž .part, C r , to the two components of the translational
eigenfunction, =Õ), of the adjoint homogeneous equation.0

w xWe proceed in the usual way 22 , taking the product with
the eigenfunction and integrating by parts. In order to
avoid divergences in the far field, the integration is over a



( )Yu.S. KiÕshar et al.rOptics Communications 152 1998 198–206 201

Ž y1r2 .circle with a finite large radius LsO e 41, and
the contour integrals do not Õanish:

L 2p
)Re r d r df =Õ C rŽ .H H 0½

0 0

2p
) )yL df =Õ PE Õ yÕ PE =Õ s0. 16Ž .Ž .H 0 r 1 1 r 0 rsL 5

0

We take the direction of F r as the y axis; then the
normal direction is the x axis. The projection on the x and
y components of the translational eigenfunction yields the
following expressions for the area integrals:

I symp V yF i ,Ž .x y y

i rI smp V yF ymF I q I , 17Ž .Ž .Ž .y x x 1 2

where

d rL 2 2I s r 1yr r r r d rŽ . Ž .H1 d r0

d r d r d d rL 1s r r yr r d rsŽ .H 2½ 5ž /d r d r d r d r0

18Ž .
Ž .has been computed using Eq. 11 then integrating by

parts, and
2d rL 1 2I s r r qr s ln Lrc , 19Ž . Ž . Ž .H2 2½ 5ž /d r0

with cf1.126, has been found numerically. The x-com-
ponent is non-divergent, and can be cancelled exactly by
setting V sF i.y y

Ž .The contour integral in Eq. 16 depends on the asymp-
Ž . w Ž .xtotics of the first-order field Õ . Since r L A 1yO e ,1 0

the contour integral can be expressed, to the leading order,
through the phase field only. This can be done in two
ways: first, as the outer asymptotics of the inner solution
for the first-order correction Õ , and second, as the inner1

asymptotics of the far field solution. It can be shown that
the leading term in the asymptotics of the phase correction,

Ž . Ž . Ž .obtained by solving Eq. 12 , is u r Ar ln a r cosf,1

where the parameter a should be found by matching with
the outer solution. The use of the solvability condition

Ž .shortcuts actually solving the first-order equation 12 .

3.2. Far-field expansion and matching

According to the method of matched asymptotics, now
we should match the expansion near the vortex core with
the outer expansion for large r. This means that we should
compute the far-field correction to the background field,
and take its inner limit, that must give a value of the
contour integral AF r ln L to match the inner solution and

Ž .cancel the divergence of I . Eq. 5 has to be rewritten in2

the coordinate frame Xse x extended by the factor e .
After setting Õsr e iu , the real and imaginary parts are
separated as usual giving, respectively, the Bernoulli and

the continuity equation. The former gives in the leading
order just rs1, and the latter gives the phase equation

ˆ 2 ˆ= uqFP=us0, 20Ž .
ˆwhere = is the gradient with respect to the extended

variable. This should be, strictly speaking, solved with a
r ˆposition-dependent F s= ln I , subject to the circulationb

condition relative to the instantaneous vortex position.
The solution with constant F r, which we assume to be

w xdirected along the Y axis, is expressed 22 as

u sym F qF F r , u smF , 21Ž .Ž .X Y Y X

where F satisfies the equation

ˆ 2 r
= FqF F s2pd ryr , 22Ž . Ž .Y 0

and it can be therefore found in the form

F rR RF r

Fsyexp y sinf K , 23Ž .0ž / ž /2 2

Ž .where Rse r is the extended radial coordinate and K x0

is a modified Bessel function. The inner asymptotics of u

following from this solution is
r gm RF e

rusmfy RF cosf ln , 24Ž .
2 4

Ž .where g is the Euler constant gf0.577 . For matching, it
has to be rewritten using the inner scaling; then R is
replaced on the matching contour by eL.

Ž .Returning to the contour integral in Eq. 16 , we take
note that terms decaying faster than 1rr vanish in the
limit L™` and can be neglected. Terms surviving the
integration over the circle appear only in the y component

Ž . Ž . Ž .of the solvability condition. Using Eqs. 24 , 17 and 19 ,
Ž .the y component of the solvability condition 16 now

becomes

1i rmp V yF ymF q ln LrcŽ .x x 2½
gq1r2L e

ryln eF s0. 25Ž .54

Collecting all the results and removing the book-keep-
ing parameter e , we can present the solvability conditions
for the two components in a vector form

< r < gc f e0i rws f qmJf ln , 26Ž .0 0 ž /4

where, for simplicity, we introduce the operator of rotation
by pr2, J, which is defined by the matrix

0 y1Js ,ž /1 0

Ž .and the force components, f , are defined by Eq. 3 , but
evaluated at the vortex core.
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In the dimensional units which we use below to com-
pare with the experimental results, the motion equation for
the vortex core can be presented, by recovering the physi-

Ž .cal scaling in Eq. 26 , as the following,

d r m0
k n s y=u q CJ =ln I , 27Ž .0 0 b bž /d z 2 rsr0

where J is the operator introduced above, and C is a
slowly varying function of I . In the particular case of theb

Kerr medium, the coefficient C has been derived above:

g < <ce =ln Ib
Csyln ž /4k n 2n I rn'0 0 2 0 0

but in the general case of non-Kerr medium we can expect
a similar form of the motion equation, as described below.

It is important to mention that the derivation of the
analytical model presented above, even being asymptoti-
cally rigorous, is applicable only for weak inhomogeneities
of the background field. As a result, the parameters for-
mally corresponding to negative values of the coefficient
C, including the limit C™1, are beyond the applicability

Žlimits of the asymptotic methods i.e. the logarithm of a
large quantity does not change sign within the approxima-

.tion adopted .

3.3. Extension to a general case of non-Kerr medium

Ž . Ž .For a general function g I in Eq. 2 , the coordinates
Ž . Ž .are rescaled by g I rather than I as before, and Eq. 50 0

becomes

2< <E Õ g I g Õ IŽ . Ž .b b2i q= Õq 1y Õsye=ÕPF .
E z g I g IŽ . Ž .0 b

28Ž .

Ž .Expanding as in Eq. 7 and proceeding exactly as in the
Kerr case gives in the zero-order a modified equation for
the stationary vortex profile

22 < <= Õ q 1yG Õ Õ s0, 29Ž .Ž .Ž .0 0 0

Ž . Ž . Ž .where G x sg I x rg I . In the first-order approxima-0 0
Ž .tion Eq. 12 is again obtained, but with a modified

coefficient on the rPF r term. Thus, all results are obtained0

as before with a modified numerical coefficient c in Eq.
Ž .19 and with a rescaled coefficient

g < <ce =ln Ib
Csyln ž /4k n 2n I rn( Ž .0 0 nl 0 0

In particular, for the important case of a saturable nonlin-
earity we take

I
g I s ,Ž .

1qsI

where the dimensionless parameter s characterises the
inverse saturation intensity relative to the background in-
tensity; larger values of s correspond to a stronger satura-
tion of the nonlinearity. Calculation of the coefficient c for

Ž .this model yield cs1.126 at ss0 non-saturable case ,
cs1.412 at ss1, and cs1.639 at ss2.

3.4. Prediction of Õortex motion

As follows from the analysis presented above, to de-
scribe the vortex drift induced by the diffracting back-
ground field, one should know the evolution of this field a
priori, so that the radial and angular velocity components
for the vortex motion can be calculated according to Eq.
Ž .27 . It is implicit in the chosen assumptions of scale that
the background field in the absence of the vortex evolves
in approximately the same manner as it would when
hosting a vortex. Thus, even qualitative knowledge of the
propagation behaviour of a field may be used, along with
the vortex equation of motion, to predict the action upon a
vortex subsequently nested in that field. The following
example of a vortex nested in a Gaussian beam serves to
illustrate how vortex motion may be simply predicted.

The transverse ‘velocity’ of a vortex, according the
Ž .model 27 , has two components arising separately from

the transverse phase and intensity gradients of its back-
ground field, evaluated at the position of the vortex. The
first component, y=u , is directed normal to the wave-b

front of the background, that is in the direction of trans-
verse energy flow in the background field, giving rise to
radial motion of a vortex in a Gaussian beam. The second

1component, mCJ =ln I , is directed along the intensityb2

Ž .contour isophote of the background upon which the
vortex is positioned, with the sense of direction given by
the vortex charge, m. For a Gaussian background, the
isophote in any transverse plane is a circle, and so the
second component of velocity describes the angular mo-
tion of the vortex. The flattening of the intensity profile
under nonlinear action reduces the intensity gradient and
thus subtracts from the rotation experienced by a vortex in

Žlinear propagation. For flatter intensity profiles plane
.waves , the motion of the vortex becomes more dependent

on the background wavefront solely, and results of previ-
w xous work which have examined this behaviour 28,29 may

be recovered.
Qualitatively similar types of vortex behaviour, namely

the vortex drifts induced by background field gradients,
have been also observed in numerical simulations of spiral

w xwaves 31 within a system governed by the complex
Ginzburg-Landau equation. However, no asymptotic the-

w xory has been developed in Ref. 31 in order to describe
this behaviour analytically.

A simple analysis can be made for ‘beam-like’ fields
employing a Gaussian ansatz to approximate the evolution
of the background field in a self-defocusing medium.
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Using the Gaussian ansatz, we can make explicit calcula-
Ž .tions in Eq. 27 , and the resulting equations for the vortex

core can be integrated to yield

w zŽ .
r z s r 0 , 30Ž . Ž . Ž .0 0w 0Ž .

mC dzz
f z sf 0 q , 31Ž . Ž . Ž .H 2k n w zŽ .00 0

where the polar coordinates r and f characterise the0
Ž .vortex position at a propagation distance z. Here w z is

the beam radius which can be calculated by various meth-
w xods 32 . These equations have been found to effectively

characterise aspects of vortex behaviour important to the
w xproblem of vortex steering 33 . Although linear propaga-

tion is outside the parameters set in the derivation of the
equation of motion, exact agreement is obtained, in this
case, with vortex dynamics calculated by other methods
w x34 , provided that C™1. Indeed, even self-focusing be-
haviour is qualitatively described for situations in which
the background remains ‘beam-like’, that is, prior to the
onset of beam collapse, though the form for C is not
determined.

Experimental and numerical results also confirm that
accurate qualitative predictions may be made using the

Ž .model 27 , even where the background deviates from the
familiar plane wave or Gaussian form. For example, a
black soliton stripe has isophotes which run parallel to the
stripe and no transverse energy flow, suggesting that a
vortex will travel parallel to the stripe with propagation. Of
course, the soliton stripe is transversely unstable and its
evolution is quite significantly altered by the presence of a
vortex, thus taking this situation outside the descriptive
limits of this model for vortex motion. However, with a
vortex far enough away from the stripe, the onset of stripe
instability may be delayed and the predicted parallel mo-
tion may be observed.

Vortex interaction is also adequately accounted for by
considering the host beam for one vortex as being com-
prised of the underlying background field along with the
remaining vortices. A single vortex has circular isophotes
centred on the vortex core and also circular energy flow.
Thus one vortex interacting with the background field
generated by another will move in the direction normal to
the line connecting its core with the background vortex.
The situation is exactly the same reversing the roles of the
vortices in the pair. The resultant motion of the vortex pair
can therefore be only circular or parallel, depending on the
vortex chirality. It is also possible to include the effect of a
non-planar background in this picture, in order to estimate
any influence on the observed interactions between vor-
tices.

A simple physical argument underlies this form for the
vortex equation of motion used in the above examples,
which may clarify the mechanisms underlying vortex be-
haviour. Consider the ‘momentum’, H I =u , of a small

element of the transverse field surrounding the vortex core.
In the first case, assume that the intensity is uniform, then
the momentum of the element is proportional to the sum of
the vortex phase gradient around the core, which is zero,
and the sum of the background phase gradient around the
core. Thus the element around the core has a momentum
approximately proportional to the background phase gradi-
ent at the vortex position, giving rise to the first velocity
component in the equation of motion. In the second case,
assume that the background phase is uniform, then the
background phase gradient around the core is zero. The
momentum of the element is thus proportional to the sum
of the vortex phase gradient weighted by the background
intensity, around the core. Using the ideas of vector sum-
mation, it is apparent that an imbalance in background
intensity, over the small region around the vortex core,
gives rises to a net momentum component in the direction
normal to the intensity gradient, i.e. along the isophote,
sourcing the second velocity component in the equation of
motion.

We can also draw the reader’s attention to several
analogies with the problem of the fluid vortex motion.
Indeed, employing the language of the fluid mechanics and

Žusing the analogy between the superfluid i.e. described by
. Žthe NLS equation and classical vortices see, e.g., Ref.

w x.30 , we can also interpret qualitatively the drift of the
vortex along the phase gradient as advection of the vortex
by flow of the underlying background field. Analogously,
the vortex glide along the isophotes of the background
field amplitude can be interpreted as a Magnus shift. That
the origin of vortex dynamical effects may be justified in
this way imparts a generality to the equation of motion,
suggesting that it may retain some validity even outside
the specific parameters set in its formal derivation.

4. Experimental results and discussions

Experiments were undertaken to measure the motion of
a vortex during nonlinear propagation and to compare this
behaviour with the theory of vortex motion developed in
Section 3. The nonlinear medium was comprised of a 20
cm long cell Pyrex cell containing atomic rubidium vapour.
A Ti:sapphire laser provided a cw Gaussian beam tuned to
one of the hyperfine 5s–5p resonances of the rubidium3r2

atom at a wavelength of 780 nm, for a strong nonlinear
response to propagation through the cell. The self-defocus-
ing regime was obtained by detuning the laser to the lower
frequency region of the resonance. A schematic of this
experimental arrangement is shown in Fig. 1. The initial

Žcondition was generated by imaging with a telescopic lens
.arrangement the waist of the Gaussian laser beam onto a

phase mask, similar to masks used in previous investiga-
w xtions of screw dislocations 35,36 , thereby introducing a

singly charged phase dislocation into the wavefront. The
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Fig. 1. Experimental setup. Relevant detail may be found in the
text. Ti:sapphire denotes the cw laser, T denotes a telescopic lens
arrangement, M is the computer generated phase singularity mask
from which the first order diffracted beam is taken, X is a
translation stage used for direct manipulation of the initial position
of the dislocation in the beam, Rb:Cell is the nonlinear medium
and CCD is the image capture system.

beam waist and dislocation were then imaged onto the
input window of the nonlinear cell. After propagation
through the atomic vapour, the image at the output cell

Ž .window was captured with a CCD camera. Fig. 2 b shows
the output images of a defocused laser beam containing an

w Ž .xoptical vortex and the associated input profile Fig. 2 a ,
comprised of a Gaussian beam and phase dislocation, from

which the vortex soliton was generated. The dark spot in
the intensity distribution is coupled to the location of the
phase singularity within the spiral wavefronts, and its
minimum indicates the location of the optical vortex.

Systematic measurements were made for a beam with
an input 1re2 radius of 0.16 mm and power of 52 mW,
with the dislocation located 0.11 mm from the beam axis.
The output position of the vortex was plotted as function
of the detuning away from the resonance. The results are

Ž . Ž .shown in Figs. 3 a and 3 b for a cell temperature of 888C
Ž . Ž .squares and 1088C crosses . As detuning was increased,
the induced nonlinear refractive index followed the ex-
pected dispersive behaviour, beginning at zero, reaching a
maximum at ;0.4 GHz and then decreasing far from the
resonance.

To test the predictions of our theory against the experi-
Ž . Ž .mental results presented in Figs. 3 a and 3 b , the nonlin-

ear evolution of the background was simulated and the
position of the vortex at the output of the cell was obtained

Ž .by integrating Eq. 27 over the 20 cm propagation dis-
tance. The model for saturable defocusing nonlinearity was

Ž . Ž .Fig. 2. Examples of optical vortex images captured near the input a and just at the output b of the cell. Below the images of the
Ž .corresponding intensity profiles along a line through the vortex are shown. The input profile a is comprised of phase dislocation in a

Gaussian beam, with linear diffraction producing a dip in the intensity profile. After nonlinear propagation, the optical vortex soliton is
Ž . Ž . Ž .formed b . Magnification factor for b is 80% of the magnification factor of a , as marked by the scales on the profiles.



( )Yu.S. KiÕshar et al.rOptics Communications 152 1998 198–206 205

Ž . Ž .Fig. 3. Output radial a and angular b position of the vortex at
the output of the cell as a function of the detuning below the
resonance. The graphs show results for a cell temperature of 888C
Ž . Ž .squares and 1088C crosses . The corresponding behaviour, pre-
dicted by the theory, is shown by the interpolated line. Note that
for higher temperature, the vapour concentration is increased
thereby strengthening nonlinearity at all detunings.

w xchosen as in Ref. 5 , and model parameters were obtained
for each detuning by the process of output profile match-
ing. The output positions predicted by theory are plotted in

Ž . Ž .Figs. 3 a and 3 b as solid curves for comparison with
experimental results. Similar to the preliminary results

w x Ž .previously reported in Ref. 33 , Fig. 3 a shows that the
radial motion of the vortex in the beam is very well

Ž . Ž .described by Eq. 27 . In addition, Fig. 3 b shows that
there is also a reasonably good qualitative agreement
between the theory and experiment with regard to vortex
rotation. Discrepancies in the results may arise from tran-
sient effects in the beam evolution, in particular the reshap-
ing and radiation associated with the formation of a vortex
soliton from a phase dislocation. Such effects were not
incorporated in this essentially asymptotic theory for vor-
tex motion.

ŽFig. 4 shows the results of the asymptotic theory solid
. Žcurves together with numerical simulation results dashed
.curves , allowing the vortex propagation dynamics to be

directly compared. Nonlinear absorption was removed from
the simulations, to allow the propagation conditions to be
more closely matched to those under which the asymptotic

Ž .model 27 was derived. The simulated trajectories fol-
lowed by the optical vortex follow quite closely the paths
calculated from the gradients of the background field.
Excellent agreement was obtained for the radial vortex

drift in the cases of both Kerr and saturable nonlinearity,
Ž .see Fig. 4 a . As was the case with experimental results, it

was found that the agreement remained qualitatively good
provided that the background gradients were shallow over

< < < <the trajectory of the vortex, i.e. when =u , =ln I <k nb b 0 0

2n I rn .( Ž .nl 0 0

Using the experimental results and the analytical model
Ž .27 for the vortex motion driven by varying gradients of
the background field, it is possible to suggest a vortex
steering mechanism whereby a weak, secondary beam,
co-propagating and coherent with the vortex field, is used
to manipulate the vortex position. Indeed, this weak beam
allows us to vary the background gradients, namely by
interferometrically inducing a small initial displacement of
the vortex core with respect to the axis of its host beam,
and therefore to move the vortex core in the desired
direction.

Such a scheme of the vortex steering has been recently
w xdemonstrated by us in Ref. 33 where a weak coherent

field, with about 1% of the maximum intensity of the
vortex background, was split from the laser beam prior to
the vortex mask, and recombined near the cell input using
a second beam splitter. The weakly interfering beam in-
duced a small change in position of the vortex, with

Ž . Ž .Fig. 4. Radial a and angular b position of the vortex shown as
a function of propagation distance through a simulated absorption-
less medium. The graphs show the simulated vortex trajectory
Ž . Ž .dashed line along with the theoretical trajectory solid line

Ž .given by the equation of vortex motion 27 . Results are shown
for both a Kerr medium and a saturable medium, demonstrating
applicability of the theory in both cases.
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respect to the beam axis, without the destruction of the
Gaussian form of the vortex host beam by interference
fringes. The amplitude of the interfering field controlled

Ž .the initial radial displacement of the vortex, r 0 , while0
Ž .the phase controlled the angular position, f 0 . The weak

field, producing a small initial shift of the vortex radial
position, induced a much larger shift after nonlinear propa-

Ž .gation, as may be seen from Eq. 30 . This allowed the
input port of the vortex-induced waveguide to remain
approximately fixed, while the output port was steered by
the coherent background field, the effect was found to be
in excellent agreement with the measured increase in the
vortex displacement. These results show that the model we
derived here is well suited for describing the steering
behaviour of the vortex in a practical context.

5. Conclusion

We have presented an asymptotic theory of the vortex
motion in a slowly diffracting background field. We have
derived the motion equation for the vortex core which
allows us to treat quantitatively the vortex radial drift and
rotation induced by the background phase and intensity
gradients, respectively. The analytical and numerical re-
sults have been compared with experimental data on the
vortex drift and rotation in a Gaussian beam passed through
a nonlinear medium and good agreement was observed.
The results allowed us to suggest and verify a simple
scheme for steering optical vortex solitons.
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