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We study analytically and numerically the effect of perturbations on (spatial and temporal) dark
optical solitons. Our purpose is to elaborate a general analytical approach to describe the dynamics of
dark solitons in the presence of physically important effects which break integrability of the primary
nonlinear Schrodinger equation. We show that the corresponding perturbation theory differs for
the cases of constant and varying backgrounds which support the dark solitons. We present a
general formalism describing the perturbation-induced dynamics for both cases and also analyze the
influence of several physically important effects, such as linear and two-photon absorption, Raman
self-induced scattering, gain with saturation, on the propagation of the dark soliton. As we show,
the perturbation-induced dynamics of a dark soliton may be treated as a result of the combined
effect of the background evolution and internal soliton dynamics, the latter being characterized by
the soliton phase angle. A similar approach is applied to the problem of the dark-soliton propagation
on a finite-width background. We analyze adiabatic modification of a dark pulse propagating on a
dispersively spreading finite-width background, and we prove analytically that a frequency chirp of
the background does not affect the soliton motion. As a matter of fact, the results obtained describe
the perturbation-induced dynamics of dark solitons in the so-called adiabatic approximation and, as
we show for all the cases analyzed, they are in excellent agreement with direct numerical simulations
of the corresponding perturbed nonlinear Schrédinger equation, provided the effects produced by
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the emitted radiation are small.

PACS number(s): 42.81.Dp, 42.50.Rh, 42.65.Jx, 42.65.Dr

I. INTRODUCTION

Light solitons in time (temporal solitons) and space
(spatial solitons) have been the object of intensive the-
oretical and experimental studies during the last three
decades. The solitons, localized-in-time optical pulses or
bounded-in-space optical beams, evolve from a nonlinear
change in the refractive index of the material, induced
by the light-intensity distribution. When the combined
effects of the refractive-index nonlinearity and the pulse
dispersion (in the case of temporal solitons) or diffraction
(in the case of spatial solitons) exactly compensate each
other, the pulse (or beam) propagates without change
of its shape, being self-trapped by the waveguide non-
linearity. The nonlinear effects which are responsible for
the soliton formation are, in general, Kerr-like effects,
inducing local index changes proportional to the local
light power. In this case, the main nonlinear equation
governing the pulse evolution is the famous nonlinear
Schrédinger (NLS) equation,

du o 8%u
igt 296 + |[uf?u =0, (1)
where u is the (complex) amplitude envelope of the elec-
tric field, z is the propagation distance along the optical
waveguide or fiber, and the variable £ has a different sense
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for temporal or spatial problems. In the case of tem-
poral solitons observed in optical fibers (see, e.g., Refs.
[1, 2] and references therein) the variable { stands for a
retarded time measured in a frame of reference moving
along the fiber at the group velocity. In this case the
Kerr effect always produces a self-focusing contribution
to the refractive index of the silica [the sign “+” in Eq.
(1)] but the group-velocity dispersion (GVD) is known
to vanish at a wavelength of about 1.3 pm so that it
is positive (o = —1) at larger wavelengths and negative
(0 = +1) at shorter ones. In the case of spatial optical
solitons (see, e.g., Ref. [3] and references therein) the
variable £ stands for the transverse coordinate, so that o
is always positive but nonlinearity itself may change sign,
being positive [the sign “+” in Eq. (1)] for the so-called
self-focusing nonlinear media, or negative [the sign “—”
in Eq. (1)] for defocusing ones.

In the case of the anomalous GVD in fibers or
the self-focusing nonlinearity in planar waveguides, the
continuous-wave (cw) solution of the NLS equation (1)
becomes modulationally unstable and it breaks into a
chain of localized pulses, the so-called bright solitons.
Soliton propagation of bright optical pulses has been ver-
ified in a number of elegant experiments (see, e.g., a work
by Mollenauer et al., [4] as well as more recent investiga-
tions of the soliton transmission in fibers [5]).

In the case of the normal GVD in fibers or the self-
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defocusing nonlinearity in waveguides, there are no bright
solitons; instead pulses (or beams) undergo enhanced dis-
persive (diffractive) broadening and chirping. However,
in this case the cw solution is modulationally stable, and
the soliton pulses appear as localized nonlinear excita-
tions of a background wave. The interest to analyze the
dark-soliton propagation in optical models has been ini-
tiated by several experimental observations of temporal
dark solitons in optical fibers [6-8] and spatial dark soli-
tons in laser beams and planar waveguides [9-11]. We
would like to note that such an experimental success to
observe dark solitons may be mostly explained by the
possibility to produce light beams of a high intensity or
pulses with a duration of several picoseconds, but the
physics underlying the dark-soliton propagation of the
electromagnetic wave envelope is a rather fundamental
phenomenon. To support this statement, we mention re-
cent experiments [12] which reported the observation of
dark solitons in thin magnetic films.

Properties of dark solitons have been described in
many theoretical and several experimental papers (see,
e.g., Refs. [13]-[35]) and the present state-of-the-art re-
sults in this field have been summarized in two review
papers [36,37]. As has been recently proposed in [29],
various types of optical switching devices may be based
on the propagation and interaction of dark spatial soli-
tons which, similar to bright spatial solitons [38], may
guide a probe optical beam. Such devices have very in-
teresting properties, e.g., they may conserve the soliton
steering angle, the key characteristic of the spatial soliton
switching, even in the presence of the two-photon absorp-
tion [39], the effect which may have a dramatic influence
on bright spatial solitons [40].

In many physical applications, the solitons are affected
by different (even small) perturbations which may dras-
tically change the pulse propagation. The perturbation
theory for solitons is a rather well elaborated subject of
the nonlinear dynamics of the soliton-bearing systems
(see, e.g., the review paper [41]); however, up to now
such a theory mostly covered the case of bright solitons,
not proposing an analogous approach for dark solitons.
Several analytical works have treated the perturbation-
induced dynamics of dark solitons (see, e.g., some exam-
ples in Refs. [17-20, 23, 24, 33] and some other cases in
[37]), but up to now there was no systematic approach
to analyze the effect of small perturbations on the prop-
agation of dark solitons. The main problem which does
not allow us to apply immediately a general method of
perturbation theory for solitons [41] is the background
which supports the dark-soliton propagation: in many
physically important cases perturbation leads to an in-
duced dynamics of the background so that the perturba-
tion theory cannot be straightforwardly applied to that
case.

The present paper proposes a systematic way for
studying the effects of small perturbations on dark soli-
tons in the framework of the so-called adiabatic approxi-
mation. We show that the corresponding approach must
differ for the cases of constant and varying background.
For both the cases we show how to derive effective equa-
tions for the soliton parameters, and we point out that

the perturbation-induced dynamics of dark solitons may
be understood as a combined effect of the background
evolution and the “internal” soliton motion described by
the soliton phase angle. We apply our general approach
to several physically important perturbations which ap-
pear in the physics of short-pulse propagation in optical
fibers and self-trapped beams in planar waveguides, such
as linear or two-photon (nonlinear) absorption, Raman
self-scattering, gain with saturation, and we confirm our
analytical predictions based on the adiabatic approxima-
tion by direct numerical simulations with rather good
agreement.

The paper is organized as follows. In Sec. II we dis-
cuss the integrals of motion for the NLS equation show-
ing how to describe properly the background wave and
localized (dark) pulses which are propagating on it. In
this consideration we naturally come to the idea of renor-
malized integrals of motion to dark solitons as recently
introduced in Ref. [33] but which has been known, as
a matter of fact, much earlier since the work of Lieb
on nonlinear excitations of an interacting Bose gas [42]
(see also Ref. [43] for review). Section III is devoted to
the basic approach of the perturbation theory for dark
solitons. As we show, the method does differ for the
cases of constant and varying background so that it al-
lows us also to analyze the cases when the background
is changing in the presence of perturbations. In Sec. IV
we consider several physically important cases when the
general adiabatic approach may be applied to treat the
effect of perturbations on the dynamics of a dark soli-
ton. In particular, we consider two-photon and linear
absorption, the Raman self-scattering effect, and linear
gain with saturation. In all the cases mentioned above
we compare the results of the adiabatic approximation
with the corresponding results of direct numerical simu-
lations of the primary NLS equation, and we observe an
excellent agreement provided radiation effects are small.
Despite the fact that the problem of dark solitons on a
finite-width background is not perturbative, in Sec. V we
show that it may be successfully analyzed in the frame-
work of the approach developed in the present paper. In
particular, we show analytically why in some special cases
dark solitons on a finite-width background behave simi-
larly to those on a constant background, even being not
exact solitons. In Sec. VI we summarize our results and
discuss other possible applications of the perturbation
theory for dark solitons developed in this paper.

II. INTEGRALS OF MOTION FOR
DARK SOLITONS

Most of the applications we deal with in Sec. IV are
related to spatial dark solitons in nonlinear optical wave
guides, so that to describe general properties of dark soli-
tons, we take the NLS equation in the form

Ou 18%u 2
i— + - = — |u|u = 0. 2
‘9z + 2 0z? lul (2)
As has been mentioned above, Eq. (2) describes the sta-
tionary beam propagation in a self-defocusing Kerr-type
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nonlinear optical medium, and z and z are the propa-
gation distances along the waveguide and transverse co-
ordinate, respectively. Equation (2) may be considered
as the Euler equation which follows from the Lagrangian
with the density

i Ou Ou* 1

L=-|uv'"+———u]—¢

2 (“ oz 0z ") 2

and it corresponds to the system Hamiltonian defined as
the system energy

ou

2 1

4
bl I 3
oz 2|u|, (3)
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—o0

As a matter of fact, Eq. (2) is exactly integrable [44] and
it possesses an infinite quantity of integrals of motion.
However, here we will be interested only in fundamental
ones, which have a clear physical meaning. Because the
system described by Eq. (2) is conservative, the total en-
ergy defined through Eq. (4) is conserved. Additionally,
we will consider also the field momentum,

+o0 ; *
I= J (z)dz, J(w)=3(“ai 'au)’

oo 2 oz " oz
(5)
and the power
+oo
P= P(z)dz, P = |ul®. (6)
—00

The continuous-wave (cw) solution of Eq. (2) is given by
the expression

L 1
u = uge*="Px = Ekz + ul. (7

It is easy to find that for the solution (7), the integrals
of motion (4)—(6) take the following values:

Pz I?

oL + 2P’ (8)
where L is the length of the system (or the width of
the cw beam). As is well known, the cw solution (7) is
modulationally stable in the defocusing medium. To show

that property, let us consider stability of small variations
around the exact solution (7),

u= (UO + ,U)eikz—iﬁz+i¢’ (9)

where the function v and the gradients of the phase ¥
are assumed to be small. Substituting Eq. (9) into the
NLS equation (2), we come to a system of two coupled
linear equations. Looking for solutions to the functions
v and ¥ in the standard form, (v,%) ~ exp(iQz — iqz),
we obtain the dispersion relation,

1
(@~ kg)® = ¢* (U§ + Zq’) , (10)
which shows that small excitations of the cw background

are stable, and they are characterized by the minimum
group velocity

P=lL, I=kulL=kP, E=

c? =ul. (11)

Let us consider now a dark soliton as an excitation
of the background wave (7). The solution of Eq. (2)
describing a dark soliton with velocity V moving on a
propagating background with the propagation constant
(B may be written in the most general form as

u(z, z) = uo {Atanh[ugA(x — V2)] + iB} ek=—h=+ido
(12)

where, as above, the parameter 3 = 1k* + u? charac-
terizes the dispersion relation for the background wave,
¢(0) is a constant phase, and the soliton and background
parameters, A, B, and V, are connected by the relations

wB=V -k A’+B?’=1. (13)
Therefore the dark-soliton solution (12) has three inde-
pendent parameters, two of them are related to the back-
ground properties, ug and k, and only one characterizes
the dark soliton itself. The asymptotics of the solution
(12) coincide with those of the cw solution (7); however,
the plane waves at the different edges, i.e., at z — oo,
are shifted in phase, and the total phase shift across the
dark soliton is given by the result

Ap =2 [tan-‘ (g) - g] = —2tan! (%) . (14)

Let us introduce now the integrals of motion charac-
terizing the dark soliton itself. It is clear that the to-
tal integrals of motion of the NLS model describe the
more complicated object “background plus soliton,” so
that we should modify the integrals (4)—(6) to extract
the corresponding contributions of the background. Af-
ter such a renormalization, the integrals of motion calcu-
lated for the solution (12) become finite. We will make
this renormalization for the case k = 0, i.e., when the
background is at rest and for the dark soliton we simply
have B = V/up = V/c. It is clear that the power (6)
must be modified as the following:

o o]
P, = / do(ud — [uf?), (15)
— 00
where the result (15) is obtained as a difference between
the total power (6) and the corresponding value for the
background, see Eq. (8). Calculating P, for the solution
(12) at k = 0, we find P, = 2ugA. Renormalization of
the field momentum is more complicated. To get a self-
consistent description of properties of the dark soliton,
one should extract from the total integral of motion (5)
a contribution related to the phase difference (14) pro-
duced by the soliton. Contribution of the background
into the field momentum (6) has the form I = kuZL
[see Eq.(8)], so that the soliton produces a similar con-
tribution even for £ = 0, because k differs from zero in
the vicinity of the soliton, and the corresponding con-
tribution for a varying k£ = k(z) must be calculated as
ud [ k(z)dz = ulA@, where k(z) is a function describ-
ing a local change of the background wave number in the
vicinity of the soliton. As a result, the part of the field



1660 YURI S. KIVSHAR AND XIAOPING YANG 49

momentum related to the dark soliton itself is defined as

i [ du* . Ou 2
I, = 2 /_oo dr (ug —u 8a:) —ugAg, (16)

where A¢ is given by Eq. (14). Substituting the solution
(12) at k = 0 into Eq. (16), we find

/e2 _ V2
I, = -2V+y/c2 = V2 4 2c? tan™? (—E-—V——V—) (17)

where c? is defined in Eq. (11).
At last, the soliton part of the total Hamiltonian (the
system energy) may be defined as

et 1
E,—[wd${5

and for the solution (12) it takes the form

E, = g(c2 - V232, (19)

Ou
oz

2 1 2 2\2
+3(uP-ud)?h, ()

Differentiating the formulas (17) and (19) over the soliton
velocity V, we find the simple relation

OE, _
oI,

which explicitly indicates that this renormalization of the
integrals of motion leads to the standard relation of clas-
sical mechanics, so that a dark soliton, similar to a bright
one, behaves like an effective particle.

The basic idea of the renormalization of the integrals
of motion, which introduces the corresponding values for
the dark soliton itself, does allow us to apply the per-
turbation theory for solitons considering the integrals of
motion P, I, and E for the NLS equation excluding the
corresponding contributions of the background.

v, (20)

III. PERTURBATION THEORY FOR
DARK SOLITONS

A. Constant background

The analysis of the integrals of motion of the NLS
equation to describe the so-called “soliton integrals of
motion” introduced above allows us to apply a straight-
forward technique and to describe the perturbation-
induced dynamics of dark solitons using the idea of the
renormalization. First, we consider the case of the con-
stant background when a perturbation does not change
the parameters of the cw background.

Let us consider the perturbed NLS equation,

Ou  18%u

‘9z + 2 9z?
where the term eP(u) from the right-hand side stands
for a small perturbation, € being real. In this subsection
we assume that such a perturbation does not change the
cw background i.e., it vanishes at |z| — oco. Because
the cw background wave u = ugexp(—iudz) (we con-

— |u|®u = eP(u), (21)

sider only the background at rest) does not change in
the presence of the perturbation, the integrals of motion
may be easily renormalized according to the procedure
mentioned in Sec. II. To make such a renormalization
more straightforward, let us introduce the new function
v(z, z) according to the relation

u(z,2) = uoe"i”gzv(z, z), (22)
and obtain the equation

Bv  10%
15 +

5 T 258 " (lv]? = 1)v = eP(v), (23)

where eP(v) is a renormalized perturbation eP(u), { =
uz, and £ = upz. Considering only the case of a non-
propagating background wave [i.e., k = 0in Eq. (12)], we
may now analyze how the parameters of the dark-soliton
solution (12) will be changed due to the perturbation
€P(v) from the right-hand side of Eq. (23). At k = 0,
the dark soliton (12) as a solution of Eq. (23) at e = 0
may be rewritten in the form

v((,€) = cosptanZ — ising, Z =n(€ - (), (24)

where 11 = cos ¢ and 2 = sin¢. Such a solution is char-
acterized by the soliton phase angle ¢ (|¢| < 7/2) which
describes the “darkness” of the soliton through the sim-
ple relation

cos? ¢
cosh®Z’

To treat analytically the influence of a perturbation
eP(v) on the parameters of the dark soliton (24), we
use the so-called adiabatic approzimation of the perturba-
tion theory for solitons [41]. According to this approach,
the parameters of the dark soliton (24) are considered as
slowly varying in ¢ (i.e. in z) but with the functional
shape which remains unchanged, i.e. it is assumed to be
described by Eq. (24), where we should modify Z as the
following:

]2 =1- (25)

ZHmme—/«mwwﬂ. (26)

To derive the equation for the perturbation-induced evo-
lution of the soliton phase ¢({), we may use several (dif-
ferent but qualitatively similar) methods. In this paper
we use the so-called Hamiltonian approach (see, e.g., Ref.
[41] and references therein). To apply this method, we
start from the Hamiltonian of the unperturbed system
(23),

o0
1
E = dé{ =
[l
which for the soliton solution (24) takes the value E, =

$cos® ¢ [cf. Eq. (19)]. Calculating the derivative of E
over ¢ and using Eq. (23), we find the result

]
23

+%(|v]2—1)2}, (27)

%‘Zﬁ = _e/: 3 [P(u)%—'g + P‘(v)g—’g] : (28)

Assuming adiabatic change of the soliton parameters, in
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the lowest approximation we may use Eq. (28) to find
the evolution of the soliton phase angle just using FE, for
E. The resulting equation for ¢(¢) may be written in the
form

do € ‘oo o Ov*

¢ 2cos2¢sind>Re [/_w deP(v) 6(] ’ (29)
where the functions on the right-hand side of Eq. (29)
must be also calculated in the adiabatic approximation
using the solution (24). Equation (29) is the basis of the

adiabatic approximation of the perturbation theory for
dark solitons.

B. Varying background

If the perturbation eP(u) in Eq. (21) does not van-
ish at |z| — oo, it will certainly affect the background
wave. This is the standard case of dissipative perturba-
tions which produce a slow decay of the background am-
plitude. Taking the limit |z| — oo and being interested
in the evolution of the nonpropagating background u(2)
itself (i.e., that which does not depend on ), we obtain
the equation for Eq. (21) the background evolution,

idUb

dz
Equation (30) allows us to find the law describing the
background evolution in the presence of perturbations.

Generally, a solution of Eq. (30), us(z), may be written
in the form

up(z) = uo(z)eio(‘) , (31)

- |ub|2ub = eP(up) . (30)

where the function ug(z) characterizes the change of the
background amplitude and 6(z) is a varying phase of the
background wave. To describe now the evolution of a
dark soliton on such a varying background we should
remove the background by the transformation [cf. Eq.

(22)]
u(z,z) = uo(2)e?u(z, 2), (32)

and to find an effective nonlinear equation for the func-
tion v(z,z). In many cases (e.g., in the cases analyzed
below) such an equation may be transformed into a per-
turbed NLS equation (23) after a change of the variables
& =¢&(=,2), ¢ = ((z, 2), so that this will allow us to apply
immediately the result given by Eq. (29).

IV. APPLICATIONS

In this section we apply the general analytical ap-
proach presented above to several particular cases which
correspond to physically important perturbations to opti-
cal dark solitons. As a matter of fact, two of the problems
we analyze here have been mentioned earlier in the lit-
erature (the effects of the Raman self-induced scattering
and linear absorption); however, we present these cases
as well to show how all particular examples follow from
our general formalism.

A. Gain with saturation

As is well known, in the problem of the propagation
of spatial solitons nonlinearity is usually associated with
two-photon absorption which, in fact, appears as a by-
product of enhanced nonlinearity [40,45]. In the presence
of either two-photon absorption or gain, the stationary
self-localized states of a light wave are no longer possible;
but in the case of a combined effect, when the two-photon
absorption is compensated by a gain, the stationary solu-
tion in the form of a fundamental dark soliton was shown
to exist (see, e.g., [22]). However, as has been shown in
[30], such a solution is stable to the action of symmet-
ric perturbations but it becomes unstable to asymmetric
perturbations. In this subsection, we address the ques-
tion of stability of a dark soliton using the perturbation
theory for dark solitons presented in Sec. III.

In the case of a saturated gain (or, equivalently, in
the presence of a linear gain and two-photon absorption),
the modified NLS equation for a self-defocusing nonlinear
medium takes the form [22, 30]

Ou  10%u

"5z * 2622
where on the right-hand side the term o< o represents
the constant gain contribution and the term proportional
to K accounts for the intensity-dependent saturation of
the gain (e.g., due to the absorption). In the absence of
any soliton, the background wave may be stabilized by a
simultaneous action of the gain and absorption. Indeed,
looking for the cw solution of Eq. (33) in the form u(z) =
ug(2) exp[if(z)], we come to the following equations:

d'u.o do _ 2
az dz —Up, (34)

which show that a stable cw background with the ampli-
tude

— |uffu = icu — iK|u|?u, (33)

=up (a — Kud),

Uoo = 77 (35)

may exist as a result of interplay between the effects of
gain and nonlinear absorption. And what about a dark
soliton on such a stable background? To analyze the
dynamics of a dark soliton on the stable background with
the amplitude (35), we use the main results of Sec. III A
and look for a nonstationary solution of Eq. (33) in the
form

u(z,Z) = uoov(2, ) exp(—iu, z). (36)

It is easy to verify that the function v(z,z) satisfies the
equation

v 18%

ig—y +3557 (|v]? = 1)v = —iK(jv|* - 1)v, (37)
where y and 7 are renormalized variables, y = z(a/K)
and 7 = z4/a/K. Equation (37) clearly shows that, as
soon as |v| # 1, the combined action of the gain and ab-
sorption produces an effective perturbation to the NLS
equation which will certainly affect the dark-soliton prop-
agation. To analyze the effect of the small perturbation
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(~ K) from the left-hand side of Eq. (37) on a dark
soliton, we use Eq. (29) from Sec. IIT A and obtain the
following equation for the soliton phase angle:
dp o .,
L = = . 38
7, = 3 sin(2¢) (38)
Equation (38) is easily integrated to yield the result
#(z) = tan™? [tan ¢>(0)e%”] , (39)

which clearly shows that only the soliton with ¢(0) =0
is a stationary solution, whereas any deviation from this
particular case will lead to the evolution of the soli-
ton phase to reach a limit value, either ¢(co) = § [for
#(0) > 0] or ¢(c0) = —F [for ¢(0) < 0] correspond-
ing to an infinite width and zero contrast of the soliton
pulse. As follows from Eq. (39), any symmetric per-
turbation to a fundamental dark soliton which does not
change effectively the condition ¢(0) = 0 to the soliton
will not produce such an instability, whereas any asym-
metric perturbation leads to a change of the phase angle
and, subsequently, to the pulse decay reported in Ref.
[30].

To compare the result (39) with direct numerical sim-
ulations, we present in Fig. 1 the function sin ¢(z) in the
cases of three different initial conditions, ¢(0) = 0, 0.157,
and —0.15m, which clearly indicate that the stationary
state with ¢(0) = 0 is unstable. The solid curves are the
results given by Eq. (39) and, as follows from Fig. 1,
they are in excellent agreement with the results of direct
numerical simulations shown by diamond marks. Figure
2 shows the contour plots of the dark-soliton evolution in
the presence of a gain with saturation as in Figs. 1(a),
1(b), and 1(c), respectively. The radiation observed in
all the cases may be explained by the fact that the adia-
batic solution, even at ¢(0) = 0, is not an exact one, and
it differs from the exact dark soliton which has a more
complicated phase function (see, e.g., Ref. [22]).

1.0 . : :
S 0.0 §90090909090000000000000000000000000
£ (a)
0.5
(c)
1.0 . ; .
0.0 5.0 10.0 15.0

Propagation Distance z

FIG. 1. Evolution of the soliton phase angle given by the
function sin ¢(z), in the Kerr medium with gain at o = 0.1
and two-photon absorption at K = 0.1 for three different ini-
tial values of the phase angle, (a) ¢(0) = 0, (b) ¢(0) = 0.15m,
and (c) ¢(0) = —0.15w. The solid curves are from Eq. (39)
and the diamond marks are the results of the numerical simu-
lation of Eq. (33) with the stabilized background determined
by Eq. (35).

B. Two-photon absorption

Recently, several types of optical switching devices
have been proposed to be based on the propagation and
interaction of spatial dark solitons [29]. In order to re-
duce the power for the soliton formation and the switch-
ing threshold, one has to use materials with higher non-
linearities than that of silica. Another way to improve
nonresonant nonlinearities is to use the enhancement that
occurs near two-photon resonances. However, in many
cases an enhanced nonlinear coefficient is accompanied
by an enhancement of the two-photon absorption (TPA)
coefficient. This is the case, for example, for dark spa-
tial solitons observed in the semiconductor ZnSe which
is known to be an instantaneous, defocusing nonlinear
medium with a rather strong TPA [11,40]. Therefore, to
use spatial solitons for all-optical switching, one should
analyze the effect of TPA on the propagation of solitons.
Such an analysis was presented recently by Silberberg
[40] for the case of bright solitons. Here we analyze the
effect of TPA on dark solitons. We consider the NLS
equation modified as follows (see, e.g., Refs. [40, 39]):

du  10%u

i lulu = —iK|u|?u. (40)
Here u is the normalized field amplitude, z and z are
the normalized propagation and transverse coordinates,
and K is the normalized TPA coefficient, K = 3/2kona,
where kg is the free-space wave vector, and 3 and ns are
the nonlinear absorption and refractive index coefficients,
respectively.

In the absence of the TPA contribution, i.e., at
K = 0, Eq. (40) describes the case of a defocusing
Kerr nonlinearity where dark spatial solitons may prop-
agate on a modulationally stable background wave u =
ug exp(—iu2z), uo being the background amplitude. The
nonlinear absorption, even when small, leads to atten-
uation of the cw background wave, and the wave’s am-
plitude and phase become slowly dependent on Ku3(0)z
according to

uo(z) = ——20__ (a1)
° \/1+2Ku(2)(0)z’
0(z) = [) ud(2)dz' = 2—;{— In 1+ 2Kuj(0)z] . (42)

To take into account explicitly the TPA-induced evo-
lution of the background wave, we apply the following
transformation:

u(z,z) = uo(z)ew(’)v(z,a)), (43)

where uo(z) and (z) are changing according to Eqgs. (41)
and (42), and obtain the following equation for the func-
tion v:

ig_z + %g%’ — (Jol? = 1o = —iK(jv]* = 1)v,  (44)

where ¢ and £ are new coordinates which are connected
with z and = by the following differential relations, d¢ =
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Contour plots of numerical simulation showing the dark-soliton evolution in the presence of gain with saturation.

The plots (a), (b), and (c) correspond to the curves (a), (b), and (c) in Fig. 1 for ¢(0) = 0, 0.157, and —0.157, respectively.

u2(z)dz and d¢ = uo(z)dz. After such a transformation,
the resulting Eq. (44) has a vanishing perturbation ~ K
and it may now be analyzed by means of the perturbation
theory for solitons.

Equation (44) looks exactly like Eq. (37) of the pre-
ceding section. However, the difference is the new space-
dependent variables ¢ and £ used in Eq. (44). As aresult,
the equation for the soliton phase angle ¢ in the primary
variables takes the form [cf. Eq. (38)]

% = %Ku(z)(z) sin(2¢), (45)

where the background amplitude uo(2) decays according
to Eq. (41). Equation (45) may be easily integrated to
give the result [cf. Eq. (39)]

#(z) = tan™? {tan #(0) [1+ 2Ku}(0)2] 1/3} . (46)

One of the main characteristics of the dark-soliton
switching devices is the so-called steering angle [29]. It is
easy to see that the total shift of the dark soliton along
the = axis is given by the relation [*dz'ug(z’)sin ¢(2'),
so that the steering angle x may be defined through the
local transverse velocity,

W (z) = tanx = uo(z) sin @(z). (47)

The important conclusion based on Eq. (47) is the fol-
lowing: When the dark-soliton propagates in the pres-
ence of TPA on a decaying background ug(z), the func-
tion sin ¢(z) grows slowly keeping, at least for small ¢(0),
the product (47) almost unchanged. This simply means
that the steering angles for the switching devices based
on dark-soliton propagation are almost preserved in a
Kerr nonlinear medium in the presence of TPA. From
the physical point of view, this important property sim-
ply follows from the nature of the nonlinear absorption:
the background intensity decays faster than the central
minimum in the soliton.

In order to confirm our analysis, we have checked the
results (41), (46) of the adiabatic approximation by com-
paring them with numerical solutions of Eq. (40). Fig-
ures 3(a) and 3(b) show the evolution of the background
ug(2), the soliton phase angle defined by sin$(z), and
the transverse soliton velocity W (z) = uo(z) sin ¢(z) for
two different values of ¢(0). The analytical results (solid
curves) based on Egs. (41) and (46) are in a perfect agree-
ment with the results of the numerical simulations (open
diamonds) and, as may be seen, the steering angle is al-
most preserved provided ¢(0) is small. Small deviations
of the numerical data from the adiabatic relationship are
caused by a transition radiation which slightly changes
the intensity of the background (see Fig. 4).
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C. Linear absorption

It is important to compare the result (46) with the cor-
responding result for the linear absorption described by
the contribution eP(u) = —iyu on the right-hand side of
Eq. (40) instead of the term —iK|u|?u. As follows from
the corresponding perturbed NLS equation, in this case
the background wave decays according to the exponential
law,

uo(z) = ug(0) e 7%,
(48)
z 2

9(z) _/ w2(2ydo = 20 (g _ =2z

0 2y
As in the case of the TPA dynamics, first of all we re-
move the background evolution by the transformation
(43) where this time the functions ug(z) and 6(z) are
given by Eq. (48). The important result of such a trans-
formation is that the effective equation (44) for the func-
tion v((,€) is the NLS equation without perturbations.
This immedately implies that the transformation (43)
does allow the exclusion of the effect of the linear absorp-
tion considering the pulse evolution in the new reference
frame, so that the soliton phase angle does not change,

d¢
5. =0

This result does explain why the final equation of Ref.
[24] was correct in spite of the fact that the integrals,
formally written there, are divergent: In Egs. (7) and
(8) of Ref. [24] two infinities arising from the integrals
calculated for the dark soliton on an infinite background
finally cancel each other. However, as may be easily

(49)

20
15 b
N 10f b
5_ =
0
-40 -20 0 20 40
X
20 \
15¢ p
N 10} T 1
5E / 3
= —= =~
—40 -20 0 20 40
X

Contour plots demonstrating the effect of TPA on a dark soliton for K = 0.05 and ¢(0) = 0.27 (left column) and

¢(0) = 0.17 (right column) based on (a) adiabatic approximation given by Eqgs. (41) and (46) and (b) numerical simulations

of Eq. (40).
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checked, any effort to apply the formulas (7) and (8)
of Ref. [24] to analyze the effect of another perturba-
tion (e.g., a nonlinear absorption) will not be successful
because, as we have shown above, the dynamics of the
perturbation-induced dark soliton does include the evo-
lution of the soliton phase angle as well, which is trivial
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only for the case of a linear absorption.

Figures 5 and 6 (which are similar to Figs. 3 and 4 for
the case of the two-photon absorption) show the compari-
son of analytical and numerical results at v = 0.1 and two
initial values, ¢(0) = 0.1w and ¢(0) = 0.27. Again, we
observe a rather good agreement of the numerical results
with the adiabatic approximation and small deviations
observed are mainly caused by radiation effects.

D. Raman self-frequency shift of dark solitons

As has been mentioned above, the perturbation theory
for dark solitons elaborated in the present paper may be
effectively applied to analyze the soliton propagation in
optical fibers, i.e., temporal dark solitons [6-8]. In such
a case, the different nature of these two physical prob-
lems gives rise to different physically important perturba-
tions to dark solitons. When the pulse duration in fibers
reaches the subpicosecond regime, it becomes necessary
to include higher-order dispersion effects. These effects
are presented by higher-order derivatives in the effective
NLS equation for the wave envelope [46]. Stimulated Ra-
man scattering (SRS) is known to be one of the dominant
effects for very short optical pulses. For bright solitons
this effect causes the so-called self-frequency shift [47,48],
whereas for dark solitons, the self-frequency shift at the
initial stage of the pulse evolution [14] leads finally to
a decay of dark solitons [18, 23, 33]. From the physical
point of view, the SRS effect originates from the nonin-
stanteneous, delayed response of the fiber nonlinearity.
This effect may be described in the temporal domain by
a response function that has a form of a decaying sinu-
soidal oscillations [49]. The Raman contribution to the
nonlinear refractive index may be taken into account in
a rather general form,
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FIG. 6. The same as in Figs. 4(a) and 4(b) but for the case of the linear absorption at v = 0.1.
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t

nafuf? = ny [(1 - alul? +a [

— 00

at'u(t') (¢ t')] ,
(50)

where a is the fraction of the total (low-frequency) non-
linearity with a delayed response, and f(t) is the Raman
response function (see, e.g., Ref. [49]). The Raman re-
sponse function of fused silica is extremely short, so that
Eq. (50) may be considered in the local approximation
expanding the function [u(¢ — s)|? in the integrand of Eq.
(50) (here s = t — t') in the Taylor series around t to
obtain the contribution into the NLS equation (21) in a
local form,

eP(u) = cu o (uf?), (51)

€ being proportional to the Raman gain parameter a.
In such a form, the effect of SRS may be analyzed as
a perturbation to the standard NLS dynamics and for
dark solitons it was investigated numerically [14, 23, 25]
and analytically [18, 33]. As a matter of fact, the gen-
eral formula describing the dark-soliton propagation in
the presence of SRS was obtained in [33], whereas its
small-amplitude limit was derived earlier [18] using the
so-called asymptotic approach which in the main order
gives a perturbed Korteveg—de Vries—Burgers equation.
In the present section we consider the effect of SRS to
dark solitons once more, trying (i) to include into the ana-
lytical approach the response function of a rather general
form, i.e., to take into account the nonlocal term from Eq.
(50), and (ii) to use the SRS perturbation as a particular
example for our general perturbation theory presented in
Sec. III. Additionally, as will follow from our analysis,
taking the soliton phase angle as a parameter, it is possi-
ble to describe the SRS effect to a dark soliton using only
one equation (in Refs. {18, 33] two equations are respon-
sible for such a dynamic, the equations being different
for the opposite directions of the soliton propagation).

We start our analysis considering the perturbed NLS
equation

Ou 1 0%u 2 - ¢ "2 N 74!
o o+ lulPu = —au /_oo|u(t)| Gt — t')dt"

(52)
To write Eq. (52), we assume that the first term of the
expansion of the nonlocal part of Eq. (50),

u(t) / dsf(s)[u(t — 5)[?
+oo
- |u]2u f

+o0
(o)ds —ug(up) [ sf(e)ds,
(53)

— 00

is already included into the main Kerr-type nonlinear-
ity |u|?u so that the “renormalized” response function
G(s) has the property f_+:: G(s)ds = 0. In fact, such
a property corresponds to a constant background u =
up exp(iulz). Considering the response function as very
short, one may expand the integral in Eq. (52) recovering

Eq. (51) with

—+o0
€= ~/ sG(s)ds. (54)
If the parameter é max{G} is small, we may treat the
right-hand side of Eq. (52) as a perturbation to a dark
soliton applying the main results of Sec. III [note the
change of the sign in Eq. (52) corresponding to the tem-
poral domain]. Applying the perturbation theory to the
dark soliton (24) [with the change z — —z because of
the difference in the signs for Egs. (21) and (52)], and
changing the order of integration, one may come to the
following equation for the soliton phase angle:

do . Foo s
Fr €UOCOS¢./;00 dSG<u0cos¢>

oo tanh 7
X / dr 3 3 . (55)
oo cosh® T cosh®(T — s)

The integral over 7 may be easily calculated using the
standard formula to simplify the expression in the inte-
grand. As a result, we obtain the following equation:

dé . e
d—f = euocoscﬁ/_w dsG (uocsosqﬁ) F(s), (56)

2

= —— 3 — tanh?s) — 3tanhs] .
sinh? stanh® s [s( anh”s) an S]

(57)

As follows from Eq. (57), the local approximation may
be used only in the case when the Raman response func-
tion is short in comparison with the soliton width ~
(uo cos $)~1. In this case we may simply expand the func-
tion F'(s) into the Fourier series as F'(s) ~ F(0) + sF'(0)
and obtain the resulting equation in the form of a per-
turbed NLS equation as an expansion in the inverse width
of the soliton ~ (ugcos¢), the latter is assumed to be
small in comparison with the parameter 7-!, T being
the characteristic decay of the response function,

dé 4 3 3
dp _ 4 58
e 15euocos ®, (58)
where
+o0
€= €/ y G(y)dy. (59)

Equation (58) follows, as a matter of fact, from the result
of Ref. [33] after a simple change of variables, and in
the small amplitude limit, i.e., when ¢ is close to n/2,
it coincides with the result of Ref. [18]. However, the
result (56), (57) is much more general in the sense that it
does allow to take into account effects of various nonlocal
perturbations to the dynamics of dark solitons.

To support our analytical predictions numerically, we
have carried out numerical simulations taking, for sim-
plicity, the NLS equation with a local contribution (51)
due to the SRS effect. The results are presented in Figs.
7 and 8. Comparison of the numerical simulation results
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FIG. 7. The evolution of the phase angle of the dark soli-
ton in the presence of the Raman self-scattering effect de-
scribed by Egs. (21) and (51) at € = 0.1; (a) ¢(0) = —0.27
and (b) ¢(0) = 0.27.

with Eq. (58) is presented in Fig. 7 as the soliton phase
angle given by the function sin ¢ vs the propagation dis-
tance at two different initial values, ¢(0) = —0.2m and
#(0) = +0.2r. Figure 8 shows the evolution of a dark
soliton with an initial negative [Fig. 8(a)] or positive
[Fig. 8(b)] velocity in the presence of the SRS contribu-
tion at € = 0.1. As may be seen from those figures, Eq.
(58) describes rather well the soliton dynamics which, as
a matter of fact, corresponds to the transformation of a
dark soliton with different initial values ¢(0) into a small-
amplitude dark soliton and its subsequent decay due to
the continuous SRS-induced frequency and position shift.

To conclude the present section, we would like to men-
tion one more important effect which might become im-
portant for temporal dark solitons. This effect is a con-
tribution of the higher-order dispersion, the latter be-
comes important for rather narrow optical pulses. The
third-order dispersion has been shown to produce a non-
trivial dynamics of bright solitons (see, e.g., Refs. [50,
51]). As for dark solitons, a simple analysis based on the
perturbation theory displays a stability of dark solitons
in the framework of the adiabatic approximation. That

60 T T
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20{

—-60-40-20 0 20 40 60 —-60-40-20 0 20 40 60
X X

FIG. 8. Contour plots of the dark-soliton propagation cor-
responding to Fig. 7; (a) ¢(0) = —0.2w and (b) ¢(0) = 0.27.

is definitely true for a rather small contribution of the
third-order dispersion into the effective NLS equation.
However, in the case when the second- and third-order
dispersion contributions become of the same order (e.g.,
in the vicinity of the so-called zero-dispersion point) dark
solitons may still exist but with sufficiently changed prop-
erties (see, e.g., [21]).

V. DARK SOLITONS ON A
BACKGROUND OF FINITE EXTENT

In standard experiments involving the dark-soliton
propagation, dark pulses are created on a background
(carrier) pulse of a finite duration, and this pulse usu-
ally has the shape of a long bright pulse [6-8]. This is
also the case of spatial dark solitons observed as regions
of a decreased intensity in a beam of a finite width [9,
11]. Therefore, the interpretation of the experimental
results as the soliton propagation could be questionable
because the background pulse, being only several times
longer than the dark pulses observed, spreads signifi-
cantly and develops a frequency chirp; such a spreading is
well known in the theory of linear waves as a dispersive
spreading (temporal domain) or difraction (spatial do-
main). Tomlinson et al. [15] demonstrated by means of
direct numerical simulations that optical dark pulses su-
perimposed upon backgrounds only 10 times wider than
the soliton width can exhibit stable solitonlike propaga-
tion for relatively short distances. During propagation,
the background pulse spreads, reduces its intensity, and
develops a frequency chirp but, nevertheless, dark pulses
created on such a finite-width background did not dis-
play a drastic change and they adiabatically maintained
their soliton characteristics. As has been pointed out by
Gredeskul et al. [19], for the finite-width background the
corresponding eigenvalue problem of the inverse scatter-
ing transform (IST) has no eigenvalues of the discrete
spectrum and dark pulses created on a vanishing back-
ground correspond instead to the so-called quasistation-
ary states of the IST eigenvalue problem. This simply
means that these dark pulses are not proper solitons and
they disappear as soon as the propagation distances are
taken to be larger. All these results, supported by direct
numerical simulations [15], are in a good agreement with
experimental investigations of dark solitons. However,
those results do not give a clear physical explanation why
the dark pulses, even being not proper solitons, do not
change significantly when the background itself spreads,
reduces its intensity, and develops a frequency chirp. In
the present section we apply the perturbation theory de-
veloped above to explain analytically the phenomena ob-
served at the dark-soliton propagation on backgrounds of
finite extent.

In fact, the problem of a dark soliton on a finite-width
background is not that formally considered as a pertur-
bative problem. However, as we show below, it may be
reduced to that problem considering first the background
evolution.

Let us consider the NLS equation without perturba-
tions,
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Ou N 1 &
‘9z T 2022
For vanishing boundary conditions, Eq. (60) is known to
describe the spreading pulses (or beams) which undergo

enhanced broadening and chirping. Let us take such a
quasilinear solution in a rather general form,

— ulfu = 0. (60)

u(z,z) = uo(m,z)ew(”z), (61)

where we have introduced the pulse amplitude uo(z, 2),
and phase 6(x,z). As is well known, Eq. (60) is ex-
actly integrable and it may be analyzed by means of the
IST technique [44]. For vanishing boundary conditions
Eq. (60) discribes an asymptotic decay of the so-called
nonsolitonic pulses, and the characteristics of such a dis-
persively spreading pulse may be found with the help of
the IST technique [46],

2 1 T\ |2
ug(z, 2 :Rln'a (—Z)’ , oz 1, (62)

where a(A) is the so-called Jost coefficient introduced in
the IST method applied to Eq. (60) with the boundary
conditions u — 0 at |z| — co. The evolution of the pulse
phase 0(z, z) displays, in its turn, an enhanced chirping.

Let us consider now the evolution of a dark pulse su-
perimposed upon such a spreading background, looking
for a solution of Eq. (60) in the form

u(z, z) = uo(z, 2)e* ™o (z, 2), (63)

where v(z, z) falls off fast as = increases. Substituting
Eq. (63) into Eq. (60) and assuming that the back-
ground function wuo(z, z) exp[if(z, z)] is a solution of the
NLS equation (60), we obtain the following equation for
the function v(z, z),

o 1o
‘9z T 2022

Ov
oz’
(64)
where uy = up(z,z) and 6 = 0(z,z) are varying ampli-
tude and phase, respectively. Using the new (approx-
imate) variables introduced for slowly varying wuo(z, 2)
according to the relations d{ ~ u2dz and d¢ ~ uodz, we
come to the following equation:

9 i
wd(|v)?> - 1)v = —25; [In(uoe )]

v 182 o v O
’L—a—z + 58—5121 - (l’v'z - 1)1.) == —2-8—€ [ln(qu 9)] 5%,
(65)

which may be treated as a perturbed NLS equation (23),
allowing us to apply the results of the perturbation the-
ory for dark solitons described in Sec. III.

If we take the pulse v((,£) as a dark soliton (24), the
pulse evolution under the action of the right-hand side of
Eq. (65) may be analyzed with the help of Eq. (29) to
obtain the equation for the soliton phase angle,

dp 1 2 too 47 1 dug

¢ _ - —cro) 66

a¢ 2 cos™ ¢ /_oo cosh? Z \up 87 (66)
where ug = uo(Z, () is considered in the reference frame
moving with the soliton,

7 = cos $(C) [& - [ac sin¢(<')] -

Equation (66) is valid for a rather arbitrary background
pulse, and it clearly shows that the evolution of a dark
soliton does not depend on variations of the background
phase, so that the enhanced frequency chirp developed by
the background does not affect the dark pulse, and the
pulse maintains adiabatically its properties. Addition-
ally, as follows from Eq. (66), the change of the soliton
phase angle depends not on the extension and intensity
of the background but rather on the background’s slope
at the point where the soliton is. In practice, this result
simply demonstrates that properly selecting the input
background shape we may keep the steering angle of a
dark soliton, W = wugsin¢, almost unchanged because
the background decay will be compensated by the interal
dynamics of the soliton. Unfortunately, we cannot ob-
tain the final analytical result from Eq. (66) because the
evolution of the background ug(z, z) is known only in less
interesting asymptotic region z >> 1, see Eq. (62). How-
ever, taking into account the analytical expression (66),
it is easy to carry out numerical simulations to observe
the phenomenon predicted. First of all, in the numerical
simulations the effect of the background frequency chirp
is not observed to have any influence on the soliton prop-
agation, this result is known since the work of Tomlinson
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FIG. 9. Creation of a pair of dark solitons on an infi-

nite background with an even initial condition: (a) constant-
amplitude background, and (b) the same conditions as in
(a), but the background amplitude decreases according to
the maximum amplitude of a dispersively spreading Gaussian
pulse shown in Fig. 10(a).
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FIG. 10. Dark-soliton propagation on a finite-width back-
ground: (a) Gaussian input background pulse, and (b) super-
Gaussian input background pulse.

et al. [15]. Second, the dynamics of the soliton phase
angle vs the intensity of the constant or decaying back-
ground may be clearly seen in Figs. 9(a) and 9(b) and
10(a) and 10(b). In Fig. 9(a) we show a typical evolution
of an even dark pulse on a constant background when the
input pulse, having the same phases at the pulse edges,
splits into a pair of two (symmetric) dark solitons propa-
gating at (opposite in sign) constant velocities, and this
corresponds to a constant steering angle between the soli-
tons. If we consider the infinite background whose inten-
sity asymptoticaly vanishes according to the amplitude
of a dispersively spreading bright pulse, the transverse
soliton velocity is clearly seen to be varying, and it is di-
rectly proportional to the background intensity [see Fig.
9(b)]. This effect may be compensated, however, by the
evolution of the phase angle which depends, according to
Eq. (66), on the slope of the finite-width background.
Figure 10(a) shows that the steering angle is almost pre-
served for the Gaussian input background pulse, whereas
increasing the background slope leads to the effect oppo-
site to that shown in Fig. 9(b). This is demonstrated in
Fig. 10(b) for the so-called super-Gaussian input back-
ground pulse.

Thus, the general result (66) does allow us to under-
stand the main features of the dark-soliton dynamics on
the backgrounds of finite extent. First, the evolution of a
dark soliton does not depend on an enhanced frequency

chirp developed by the spreading background. Second,
for a decaying background the phase angle of a dark soli-
ton becomes changed according to Eq. (66), and this
change is opposite to the effect produced by the vanishing
background intensity. As a result, for the Gaussian in-
put background the transverse velocity of the dark pulse
is almost preserved by recovering the property observed
for the constant-amplitude infinite background [cf. Figs.
9(a) and 10(a)].

VI. CONCLUSIONS

In conclusion, we have proposed a simple analytical ap-
proach to describe the perturbation-induced dynamics of
dark solitons. This approach allows us to treat analyti-
cally the cases of constant as well as varying background.
We have applied our general formalism to describe the ef-
fect of several physically important perturbations to op-
tical dark solitons, and we have compared the results of
the adiabatic approximation to those of the correspond-
ing numerical simulation. This comparison has displayed
a rather good agreement, and it has supported our main
conclusion that the adiabatic approach does allow us to
describe with high accuracy the dark-soliton evolution
provided the dynamics of the slowly varying background
wave is treated in a self-consistent manner. We have also
pointed out that the analogous method is useful to ex-
plain the pulse propagation on a finite-width background,
and in this case, as follows from our analysis, the fre-
quency chirp of the decaying and dispersively speading
background does not give a contribution to the pulse
dynamics. Finally, we have summarized in Table I all
the particular cases of the physically important pertur-
bations to optical dark solitons considered in the present
paper, and we have shown separately how such pertur-
bations change the background amplitude and the soli-
ton phase angle, respectively. As follows from Table I, in
most of the cases analyzed here the perturbation-induced
dynamics of a dark soliton may be understood as a com-
bined effect of the background evolution and the change
of the soliton phase angle.

TABLE 1. Effect of different perturbations to the
dark-soliton dynamics.
Type of perturbation Background Soliton phase
angle
Two-photon absorption Varying Varying
Linear absorption Varying Constant
Raman scattering Constant Varying
Gain with saturation Constant Varying
Finite-width background Varying Varying
Higher-order dispersion Constant Constant




1670 YURI S. KIVSHAR AND XIAOPING YANG 49

The general approach developed here as well as a
rather general physics of dark solitons which may be
observed in nonlinear models of very different physical
origin, allow us to believe that our method and the re-
sults will be useful for other physical systems supporting
propagation of (temporal or spatial) dark solitons.
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