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This paper is concerned with the long-wavelength instabilities(infrared catastrophes) occurring in Bose-
Einstein condensates(BECs). We examine the modulational instability in “cigar-shaped”(one-dimensional)
attractive BECs and the transverse instability of dark solitons in “pancake”(two-dimensional) repulsive BECs.
We suggest mechanisms, and give explicit estimates, on how to engineer the trapping conditions of the
condensate to avoid such instabilities: the main result being that a tight enough trapping potential suppresses
the instabilities present in the homogeneous limit. We compare the obtained estimates with numerical results
and we highlight the relevant regimes of dynamical behavior.
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I. INTRODUCTION AND SETUP

Infrared catastrophes, or long-wavelength instabilities
(LWI ) as they are otherwise known, are ubiquitous in physi-
cal phenomena. From magnetohydrodynamics[1] to chemi-
cal models[2], and from quantum systems[3] to fluid me-
chanics[4], polymer physics[5] and plasmas[6], large scale
modulations may destabilize the system of interest. On the
other hand, many of these instabilities(and their thresholds)
have been quantified in the context of nonlinear models.

In the past few years, another context that can be accu-
rately modeled by nonlinear partial differential equations that
are known to possess LWI, has become experimentally trac-
table. This setting is, in particular, the one of Bose-Einstein
condensates(BECs) [7] whose experimental realization has
led to an explosion of interest in the field of atomic matter
waves and of nonlinear excitations in them. Such nonlinear
waves have been recently experimentally generated in BECs,
namely dark [8] and bright [9,10] solitons. Also, two-
dimensional excitations, such as vortices[11] and lattice pat-
terns thereof[12] have also been obtained experimentally,
while other nonlinear waves, such as Faraday waves[13] and
ring solitons and vortex necklaces[14] have been theoreti-
cally predicted. It is worth noting here that the nature of
Bose-Einstein nonlinear matter waves depends crucially on
the type of the interatomic interactions: dark(bright) solitons
can be created in BECs with repulsive(attractive) inter-
atomic interactions, resulting from positive(negative) scat-
tering length.

In the present work, our scope is to reexamine the LWI in
the context of Bose-Einstein condensates and exploit the
consequences on the LWI of the inhomogeneity induced by
the trapping potential. It is well known[7] in this setting that
the condensates are formed under appropriate confining con-
ditions that typically consist of magnetic traps modeled by
parabolic potentials. Our scope is then twofold. On the one
hand, we aim at illustrating the potential for the instabilities
and at examining their dynamical development when they
exist. On the other hand, the magnetic confinement provides
an additional “trapping” length scale to the problem whose

competitionwith the instability length scale may disallow the
dynamical manifestation of the LWI. In this way, we will
propose how toengineertrapping conditions so as to prevent
unstable dynamical evolution.

We will examine two benchmark examples of long-
wavelength instabilities in BECs: the modulational instabil-
ity occurring in attractive, one-dimensional(1D) BECs and
giving rise to the formation of bright matter-wave solitons,
and the transverse(“snaking”) instability of dark soliton
stripes formed in repulsive two-dimensional(2D) BECs. It
should be noted here that the genuinely three-dimensional
(3D) condensate can be considered as approximately 1D if
the nonlinear interatomic interaction is weak relative to the
trapping potential force in the transverse directions; then, the
transverse size of the condensates is much smaller than their
length, i.e., the BEC is “cigar shaped” and can be effectively
described by 1D models[15,16]. Similarly, if the transverse
confinement is strong along one direction and weak along the
others, then for this “pancake-shaped” BEC, 2D model equa-
tions are relevant[17].

Close to zero temperature, it is well known that the 3D
Gross-Pitaevskii(GP) equation[7] accurately captures the
dynamics of the condensate. For cigar-shaped BECs, the
model equation is effectively 1D and can be expressed in the
following dimensionless form:

i
] u

] t
= −

1

2

]2u

] x2 + auuu2u + Vsxdu, s1d

whereu is the macroscopic wave function(normalized to 1),
and a=a/ uau = ±1 is the renormalized scattering length,
which is positive(negative) for repulsive(attractive) conden-
sates. In this equation,t andx are, respectively, measured in
units of 9/16e2v' and 3a' /4e, wherev' is the confining
frequency in the transverse direction,a'=Î" /mv' is the
transverse harmonic-oscillator length, ande;Nuau /a' is a
small dimensionless parameter,N being the total number of
atoms[16]. Finally,
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Vsxd =
V2

2
x2, s2d

whereV=s9/16e2dsvx/v'd is the frequency of the magnetic
trap potentialV in our dimensionless units, andvx is the
axial confining frequency. Similarly the 2D model for the
pancake-shaped condensate assumes the form:

i
] u

] t
= −

1

2
Du + auuu2u + Vsrdu, s3d

where now the role of the axial frequency/spatial variable is
played by the radial onesr ;Îx2+y2d and the normalized
variables are connected to the dimensional ones similarly to
the 1D case, but with the role ofvx sv'd now played by
v' svzd.

We structure our presentation as follows: in Sec. II we
study the suppression of the modulational instability for 1D
cigar-shaped BECs in presence of a tight confining magnetic
potential, while in Sec. III we investigate the transverse in-
stability for 2D trapped BECs. In both cases we provide a
criterion (in terms of the trap parameters) giving the condi-
tions under which LWI can be avoided. Section IV is devoted
to our concluding remarks.

II. Modulational Instability

It is well known (see, e.g., the recent work[18] and ref-
erences therein) that, in the absence of external potential, the
continuous-wave(cw) solution u=u0exps−iau0

2td of ampli-
tude u0, of Eq. (1) becomes modulationally unstable when
perturbations of wave numberk,kcr;2uau1/2u0 are im-
posed. This can be equivalently interpreted as follows: when
length scales

l . lcr ;
p

u0
Îuau

s4d

become “available” to the system, then the modulation over
these scales leads the solution to instability.

However, in the presence of the magnetic trap, there is a
characteristic scale set by the trap, namely the BEC axial
size, lBEC, which depends on the trapping frequencyV.
WhenlBEC,lcr, suppression of the modulational instability
is expected. To estimatelBEC in a specific setup, we will
examine a protocol relevant to the recent experiments con-
ducted by the Rice[9] and Paris[10] groups, which has
stimulated a considerable amount of theoretical attention
[19]. In particular, we start with a 1D repulsive condensate,
whose ground-state wave function is approximately in the
so-called Thomas-Fermi(TF) regime [7], and subsequently
change the interaction into an attractive one. This is experi-
mentally achieved using the so-called Feshbach resonance:
an external magnetic field is used to modify the scattering
length of the interatomic interactions[20]. In our example,
we use as an initial condition the ground state of Eq.(1) with
a=1, which is in the TF approximationuuu2<m−Vsxd; then
at t=0 we change the sign of the scattering length, i.e., we
seta=−1. Therefore in this situationlBEC<2Î2m /V. From
the normalization conditionedxuuu2=1 one gets

m = S 3V

4Î2
D2/3

. s5d

The condition for the suppression of the modulational in-
stability lBEC,lcr [where lcr is given by Eq.(4)] gives
V.23/2sua umd1/2u0/p. In this context, the amplitudeu0 in
Eq. (6) can be well approximated asu0<Îm, since the TF
approximation is most accurate close to the center of the
condensate. Therefore ifV.Vcr, where

Vcr =
9

Î2p3
< 0.2, s6d

then the trapping conditions are “engineered” in such a way
that the modulational instability cannot manifest itself: for a
tight enough trapping potential, the modulational instability
does not occur. This is one of the key aims of this paper,
namely to quantitatively highlight how the infrared catastro-
phes can be avoided in the presence of sufficiently “tight”
trapping of the condensate. We remark that if one evaluates
lBEC by using for the ground state of Eq.(1) (with a=1) a
Gaussian with variationally determined width, one has an
estimate ofVcr in good agreement with Eq.(6). We also
notice that the critical lengthlcr is a few healing lengthsj:
indeed, when the density grows from 0 tou0

2 within a dis-
tancej, the quantum pressure and interaction energy terms
are equal when 1/s2j2d<u0

2, which means thatj<sÎ2u0d−1

and thereforelcr<pÎ2j=4.44j.
Typical experimental values for a7Li BEC are vx=2p

35 Hz,v'=2p3500 Hz,a=−3a0, andN<103; these yield
e,0.1 and V,0.5, which should be a sufficiently large
value to avoid the emergence of the modulational instability.

We tested this prediction by means of direct numerical
simulations shown in Fig. 1. The panels(a), (b), and (c)
show, respectively, the case ofV=0.3, 0.1, and 0.02. It is
seen that the supercritical, “tight” trapV=0.3 does not allow
the development of the instability for the condensate[Fig.
1(a)]. The only consequence of the change of the sign of the

FIG. 1. Condensate width as a function of time for(a) V=0.3,
(b) V=0.1, and(c) V=0.02. In(d) we plot the atomic density with
V=0.02 at three different times:t=0 (solid line), t=80 [dotted line,
corresponding to point 1 in(c)] and t=160 [dashed line, corre-
sponding to point 2 in(c)].
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scattering length is the excitation of an internal mode of the
condensate, due to the fact that the TF cloud is not the
ground state fora=−1. This results in nearly periodic oscil-
lations of the width of the wave functionW=fex2uuu2dx
−sexuuu2dg1/2, which we monitor as a diagnostic in our nu-
merical examples. ForV=0.1 [Fig. 1(b)], the width oscilla-
tions are no longer periodic: the result of the modulational
instability can be clearly discerned in the addition of an extra
frequency to the motion of the condensate for subcritical
trapping. We have identified this to be a rather smooth tran-
sition, becoming more pronounced close to the theoretically
predicted critical point ofV<0.2. We have also examined
the development of the instability for weaker trapping con-
ditions [V=0.02, see Figs. 1(c) and 1(d)]. Then an additional
frequency emerges, as the condensate is now cleaved in two
pieces during the time evolution[see Fig. 1]. For even
weaker trappings, we found that the larger the ratio of
lBEC/lcr, the more frequencies appear in the condensate
density evolution, rendering it increasingly chaotic. Hence,
we have demonstrated that a cascade of frequencies arises in
the BEC dynamics due to the modulational instability and
subsequent higher resonances that allow the breakup of the
condensate and make its motion less regular. This mecha-
nism should clearly be experimentally detectable; in fact we
surmise that the observation of a single matter-wave bright
soliton [10], rather than a soliton train[9], is due to the fact
that lBEC was smaller in the former case, as the number of
atoms was an order of magnitude fewer in the Paris experi-
ment, while the ratio of the trapping frequencies was ap-
proximately the same.

III. Transverse Instability

One of the infrared catastrophes that occur in two spatial
dimensions is the transverse instability of dark-soliton stripes
in repulsivesa.0d BECs. As a result, a dark soliton under-
goes a transverse snake deformation[21], causing the nodal
plane to decay into vortex pairs. This instability has been
examined in the context of BECs in[22], and the Bogoliubov
spectrum of the dark soliton has been obtained; in this con-
text, the relevant imaginary modes were identified to transfer
the energy of the condensate to collective excitations parallel
to the nodal plane destroying the configuration. However, as
is highlighted in[23], “the explicit connection between the
existence of imaginary excitations and a dynamical snake
instability remains unclear.” Our scope here is to illustrate
the criterion for the transverse instability and to test it against
direct numerical simulations, exposing the possible dynami-
cal scenarios and quantifying their dependence on the trap-
ping parameters.

In the absence of the potential, the transverse instability
occurs for perturbation wave numbers

k , kcr ; f2Îsin2f + u0
−2sin f + u0

−4 − s2 sin f + u0
−2dg1/2,

s7d

where sinf is the dark-soliton velocity[21] and u0 is the
amplitude of the homogeneous background, connected with
the chemical potential throughu0

2=m similarly to the previ-

ouss1Dd setting. In the case of stationary(black) solitons, of
interest here, sinf=0, hencekcr=u0

−1. On the other hand, for
Vsrd=V2r2/2, a similar calculation as for the 1D problem
yields the characteristic length scale of the BEC(i.e., the
diameter of the TF cloud) aslBEC<2Î2m /V. Then, the cri-
terion for the suppression of the transverse instability is that
the scale of the BEC is shorter than the minimal one for the
instability. The corresponding condition reads

V .
Î2m

pu0
. s8d

To obtain the minimum value ofV we need to know howm
is connected withu0. As a first guess, in the absence of the
dark soliton, one can assumeu0

2<m (close to the center of
the BEC), which yields V.Î2/p=0.45. Hence, stronger
trapping should “drown” the transverse instability and pre-
serve dark-soliton stripes on top of the Thomas-Fermi cloud
(i.e., stable “dipole” solutions). Note that in terms of real
physical units, the above-mentioned critical value ofV may
correspond, e.g., to a weakly interacting87Rb pancake con-
densate, containing<103 atoms, confined in a trap withvr
=2p35 Hz andvz=2p350 Hz.

We have numerically tested this condition, finding it to be
an overestimateof the critical trapping frequency for the
transverse instability, which isVcr<0.31. This result is
shown in the numerically obtained Fig. 2. The figure shows a
dynamical evolution example of the dipolar solution, initial-
ized with a tanhsyd imposed on the TF cloud, forV=0.35
(top) and V=0.15 (bottom). Both snapshots show the con-
tour plot of the square modulus of the wave function att
=1000(top) andt=190 (bottom). Clearly, in the former case
the transverse instability is suppressed, while in the latter a
vortex pair has been formed, demonstrating the dynamical
instability of the configuration. We have monitored the
asymptotic, long time evolution of the dipole and have ob-
served the following interesting phenomenology: for 0.18
&V&0.31, while the stripe is dynamically unstable, there is
not sufficient space for the instability-induced vortices to
fully develop; as a result, after their formation, they subse-
quently recombine and disappear. This behavior is shown in
Fig. 3 (for V=0.2): the two vortices formed are shown att
=200 (top panel), while at t=220 they recombine to form a
transient dark stripe(bottom panel). This configuration is
unstable and it subsequently breaks up to a new vortex pair
(not shown here), which eventually recombines at longer
timesst<400d. It is interesting to note that as, in the present
case, the available size of the condensate is of the order of a
few healing lengthsj (in our units,j=1/Î2), the two vorti-
ces formed hardly fit the condensate size(recall that the vor-
tex core is of order ofj [24]). This is a possible qualitative
explanation of this recombination, whose origin is the com-
petition of the length scales available in the BEC. Finally, it
should be noted that forV&0.18, the vortices will survive in
the asymptotic evolution of the system, and naturally the
weaker the trapping the larger the number of “engulfed” vor-
tices generated due to the stripe breakup.

A question that naturally arises in the results above con-
cerns the disparity between the critical-point theoretical esti-
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mate for the transverse instability and the corresponding nu-
merical finding. We believe that the disparity is justified by
the fact that the theoretical stability analysis of[21] is per-
formed for the infinite homogeneous medium(the dark-
soliton pedestal), in the absence of a magnetic trap. In the
presence of the trap on the one hand, the background is in-
homogeneous, while, on the other hand, for tight traps result-
ing in small condensate sizes, the presence of the dark soli-
ton at the BEC center significantly modifies the maximum
density. Thus, one should expect that the relationu0

2=m
should be modified asdu0

2=m, where the “rescaling” factor
d,1. Based on the results of the numerical simulations(see
Figs. 2 and 3) we have observed that embedding the dark
soliton in the BEC center reduces the maximum density of
the TF cloud to the half of its initial value. This suggests that
d=1/2,which, according to Eq.(8), leads to a new value for
V minimum, i.e.,V=1/p<0.318. This modified criterion
for the suppression of the transverse instability, namely
V.0.318, is in very good agreement with the above-
mentioned numerically found conditionV.0.31.

IV. CONCLUSIONS

We have examined case examples of long-wavelength in-
stabilities in Bose-Einstein condensates. We have revisited

the modulational instability in quasi-1D, cigar-shaped BECs,
and the transverse instability in quasi-2D, pancake-shaped
BECs. We have advocated that trapping conditions can be
engineered to avoid or induce such instabilities at will. Using
the length scale competition of the entrainment due to trap-
ping and of critical instability wavelength, we have given
explicit estimates for critical values of the trapping fre-
quency beyond which the instabilities will be absent. We
have tested these criteria in both cases and have found good
agreement with the numerical results in the 1D case. In the
2D setting, we have explained the overestimation of the criti-
cal point, on the basis of the homogeneous background as-
sumed in the theoretical estimate, as well as the modification
of the value of the maximum density of the condensate due
to the presence of the dark soliton. Our results demonstrate
how to engineer the trapping conditions, in order to achieve
supercritical regimes, devoid of long-wavelength instabili-
ties. On the other hand, for the subcritical regimes, we have
illustrated the relevant phenomenology through direct nu-
merical simulations and the cascade that leads to the insta-
bility and eventual destruction of the original coherent struc-
ture. Such results can be particularly useful in quantifying
the selection of external conditions so as to achieve or avoid
a given experimental outcome.

FIG. 2. (Color online) The panels show the contour plots of the
density uuu2 for V=0.35 at t=1000 (top) and V=0.15 at t=190
(bottom). In the first case, the transverse instability is clearly sup-
pressed, while in the second it sets in, giving rise to a formation of
a vortex pair.

FIG. 3. (Color online) Snapshots of a vortex-pair evolution in a
case where snaking instability has set insV=0.2d. In the top panel
st=200d the formed vortex pair is shown, while the bottom panel
st=220d shows the recombination of the two vortices, resulting in
the regeneration of a dark stripe structure. The latter is unstable and
decays at longer timesst<400d.
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