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§ 1. Introduction

1.1. The nonlinear Schrödinger equation and simplest optical solitons

The mathematical basis of nonlinear optics is Maxwell’s system of equations
governing propagation of electromagnetic waves in a material medium, com-
bined with relations accounting for the nonlinear response of the medium to the
electromagnetic field (Newell and Moloney [1992]). In most cases, application
of well-known asymptotic methods makes it possible to derive simplified partial
differential equations (PDEs) governing the spatial and/or temporal evolution of
essential field modes in the medium.
A typical and most important example of the thus derived asymptotic PDE

is the nonlinear Schrödinger (NLS) equation, which governs the propagation
of an electromagnetic wave in a glass fiber, or the spatial evolution of the
electromagnetic field in a planar waveguide. In the case of a single-mode fiber,
i.e., one permitting the propagation of a single electromagnetic-wave mode, the
electric component of the field with a fixed polarization is taken in the form

E(z, t) = u(z, t)V0(r) exp(ik0z − iw0t), (1)

where z, r and t are, respectively, the propagation distance along the fiber,
the radial coordinate in the transverse plane, and time; the frequency w0 and
wavenumber k0 of the carrier wave obey a linear dispersion relation for the
fiber, k = k(w), and V0(r) describes the transverse structure of the propagating
mode [the physical field is given by the real part of the complex expression (1)].
The dispersion relation determines the carrier’s group velocity Vgr ≡ 1/k ′,
dispersion coefficient D ≡ −k ′′, and “reduced time” t ≡ t − z/Vgr, where the
prime stands for the derivative d/dw taken at w = w0. Both D > 0 and D < 0 are
possible, being referred to as, respectively, anomalous and normal dispersion.
The NLS equation for the slowly varying amplitude u(z, t) of the modulated

wave (1), derived from the Maxwell equations in the absence of dissipation, is
(Agrawal [1995])

iuz + 1
2Dutt + g|u|2u = 0. (2)
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72 Variational methods in nonlinear fiber optics and related fields [2, § 1

Here, the nonlinearity coefficient is

g ≡ n2w0
cAeff

, (3)

where n2, c and Aeff are, respectively, the Kerr coefficient, the light velocity
in vacuum, and the fiber’s effective cross-sectional area. Usually, g is scaled
out of eq. (2) by means of an obvious transformation. The dispersion coef-
ficient D can also be scaled out, provided that it is constant. However, in
many important applications which will be considered in detail below in § 5,
D is a function of the propagation coordinate z. The dispersion D can readily
be made variable (modulated), as it is contributed to by the material dispersion
of the silica glass and the geometric dispersion of the fiber waveguide. These
two contributions may nearly cancel each other near the zero-dispersion point,
so relatively small variations in the fiber’s cross-section area, while only slightly
affecting g , can strongly change the small residual dispersion coefficient. Thus,
a continuous variation of the cross-section in the process of drawing the fiber
from glass melt gives rise to dispersion-decreasing fibers (see § 5.1). Uniform
fibers can be fabricated with different constant values of D, making it possible
to build a long dispersion-compensated optical link by periodically alternating
pieces with anomalous and normal dispersion. This is a basis for the dispersion-
management (DM) technique, which finds important applications in transmitting
signals through fiber-optic links in linear (Lin, Kogelnik and Cohen [1980]) and
nonlinear regimes, see § 5.4.
The same NLS equation finds another well-known application to nonlinear

optics, describing the spatial distribution of the stationary electromagnetic field
in a planar waveguide (film). In that case, the electric field with fixed polarization
is taken as

E(z, x, t) = u(z, x)V0( y) exp(ik0z − iw0t) (4)

(cf. eq. 1), where x and y are transverse (relative to the propagation distance z)
coordinates, directed, respectively, along the film and perpendicular to it, and
the function V0( y) accounts for the transverse structure of the propagating
mode. Note that, unlike the case of propagation in a fiber, the slowly varying
amplitude u from eq. (4) is a function of the transverse coordinate x, rather
than the temporal variable t . The NLS equation governing the spatial evolution
of u(z, x) in the lossless waveguide can be derived, after rescalings, in the form
(see details in the book by Hasegawa and Kodama [1995])

iuz + 1
2uxx + |u|2u = U (x) u, (5)

where, as in eq. (2), the cubic term is generated by the Kerr effect (a nonlinear
correction to the effective refractive index in the material medium), while the
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2, § 1] Introduction 73

second-derivative term, unlike that in eq. (1), accounts for the spatial diffraction
of the field, rather than temporal dispersion. The term on the right-hand side (rhs)
of eq. (5) takes into regard possible modulation of the waveguide in the transverse
direction, which gives rise to an effective real potential U (x). Note that the
positive sign in front of the nonlinear term in eq. (5) assumes that the Kerr
nonlinearity is self-focusing (corresponding to a positive nonlinear correction
to the effective refractive index), which is the case in most optical media,
including silica glass. In the opposite case of a self-defocusing Kerr nonlinearity,
which occurs in semiconductor waveguides (see, e.g., the paper by Michaelis,
Peschel and Lederer [1997] and references therein), eq. (5) takes the form
iuz + 1

2uxx − |u|2u = U (x) u.
The NLS equation with constant coefficients is one of the basic equations

of modern mathematical physics. This equation finds numerous applications,
not only in optics, but also in plasma physics, hydrodynamics, etc. Its most
fundamental property is exact integrability by means of the inverse scattering
transform (IST), which is based on a representation of the constant-coefficient
NLS equation as a compatibility condition for two systems of auxiliary linear
equations (see books by Zakharov, Manakov, Novikov and Pitaevskii [1980],
Ablowitz and Segur [1981] and Newell [1985], and some details in § 3 below).
The exact integrability makes it possible to produce a vast class of exact solutions
to the NLS equation, the simplest and most fundamental one being a soliton
(solitary wave),

usol =
h√
g
sech

(
h√
D
(t − t0)

)
exp( 12 ih

2z + i÷0), (6)

where h is an arbitrary amplitude of the soliton, which also determines its
temporal width ~

√
D/h and propagation constant (wavenumber shift) 12h

2, and
t0 and ÷0 are arbitrary real constants.
The NLS equation (2) is invariant with respect to the Galilean transformations,

which allows one to generate a family of walking solitons (this term was
introduced by Torner, Mazilu and Mihalache [1996]) out of the “quiescent”
one (6):

usol =
h√
g
sech

(
h√
D
(t − cz − t0)

)
exp

[
1
2 i

(
h2 −

c2

D

)
z + i

c

D
t + i÷0

]
,

(7)
where c is a real walk parameter. Physically, c represents a shift of the central
frequency in the soliton’s Fourier transform, which gives rise to a velocity shift
via the fiber’s dispersion.
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74 Variational methods in nonlinear fiber optics and related fields [2, § 1

As concerns the propagation of a soliton in an optical fiber, the most important
length scale is the soliton period z0: it is the propagation distance over which
the soliton’s phase changes by 1

2p (Agrawal [1995]), so that

z0 =
p
2h2

. (8)

As will be explained in different sections of this review, an essential transfor-
mation of a strongly perturbed soliton requires a propagation distance z � z0.
The soliton solution (7) is characterized by its area, energy and momentum,

S ≡
∫ +∞

−∞
|u(t)| dt = p

√
D

g
, (9)

E ≡ 1
2

∫ +∞

−∞
|u(t)|2 dt =

√
D

g
h, (10)

P ≡ i
∫ +∞

−∞
uu∗
t dt =

1√
D g

ch (11)

(the factor 12 in the definition of E is introduced in order to simplify notation
below). The energy and momentum, which are defined for an arbitrary field
configuration by means of the integral expressions in eqs. (10) and (11), are
dynamical invariants (integrals of motion) of eq. (2), while the area is not a
dynamical invariant. Due to the fact that the NLS equation is exactly integrable
by means of IST, the energy and momentum are but the two first items in an
infinite set of dynamical invariants conserved by the NLS equation. The third
invariant is the Hamiltonian of the NLS equation,

H = 1
2

∫ +∞

−∞

(
D|ut |2 − g|u|4

)
dt , (12)

while higher-order invariants do not have a straightforward physical interpreta-
tion (Zakharov, Manakov, Novikov and Pitaevskii [1980]).
Solitons in various optical media have attracted a great deal of attention, first

of all, as objects for fundamental research. In glass fibers, temporal solitons,
predicted by eq. (2), were first observed by Mollenauer, Stolen and Gordon
[1980], and the first observations of spatial solitons in planar waveguides of
various types, predicted by eq. (5), were reported by Maneuf and Reynaud
[1988] and Aitchison, Weiner, Silberberg, Oliver, Jackel, Leaird, Vogel and Smith
[1990]. Besides being a physical object of fundamental interest, solitons in fibers
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2, § 1] Introduction 75

also have a great potential for application to optical communications, as a basis
for the so-called return-to-zero format of data transmission, in which a soliton
carries a single bit of information. Detailed descriptions of this topic can be
found in books by Agrawal [1997] and Iannone, Matera, Mecozzi and Settembre
[1998].

1.2. Introduction of variational methods

1.2.1. Models without losses

In a real physical situation, it is necessary to deal with perturbed (deformed)
pulses whose area is different from that given by eq. (9). In other words, for
real pulses the initial relation between their amplitude and width may strongly
deviate from that for the ideal soliton, even if the functional form of the pulse
is still close to sech. The evolution of such a perturbed soliton is a problem of
great practical importance. Formally, it can be solved exactly by means of IST,
but the exact solution is really usable only at an asymptotic stage of the evolution
(at z → ∞), which makes it necessary to develop an approximation that yields
a sufficiently accurate explicit result for all values of z.
The corresponding variational approximation (VA) for solitons in optical

fibers was introduced in the cornerstone paper by Anderson [1983], following
the pattern of VA for solitons in other physical media (chiefly, plasmas), which
had been developed earlier by Bondeson, Lisak and Anderson [1979]. The
VA technique for optical solitons was further developed in an important paper
by Anderson, Lisak and Reichel [1988a]. These works became the basis for the
rapid development of analytical methods in nonlinear optics based on VA.
The approximation begins with postulating an ansatz, i.e., a trial analytical

form of the field configuration sought for (in most cases, the configuration is a
solitary wave). In the case of the NLS equation (2), a commonly adopted ansatz
approximating a perturbed soliton is

uansatz(z, t) = A sech
(t
a

)
exp(i÷ + ibt2). (13)

The functional form of the ansatz is fixed as concerns its t-dependence, while
it contains several free parameters, for instance the real amplitude A, width a,
phase ÷, and the so-called chirp b in the case of the ansatz (13). The free
parameters are allowed to be functions of the evolutional variable, which is z
in the case of eq. (2).
Equations governing the evolution of these parameters in z can be derived

in a natural way, provided that the underlying equation(s) (e.g., eq. 2) can be
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76 Variational methods in nonlinear fiber optics and related fields [2, § 1

derived by means of the standard variational procedure, equating to zero the
variational derivative dS/du∗ of the corresponding action functional S{u, u∗}
(the asterisk stands for complex conjugation). The variational representation
is usually available for conservative models [including those with an explicit
coordinate dependence, e.g., the above-mentioned case when the dispersion
coefficient D in eq. (2) is a function of z]. Only in some special cases do
dissipative models also admit a natural variational representation, see below.
The action is represented in the form S =

∫
Ldz, where z is realized as the

evolutional variable, and L is a Lagrangian, which is represented in its own
integral form,

L =
∫

L dtdr, (14)

where L is a Lagrangian density, that must be real, and r is the vector set
of transverse coordinates (implying the possibility to consider spatiotemporal
evolution of fields in two- and three-dimensional dispersive nonlinear media). If
the transverse coordinates are present, the ansatz must be a definite function of
both t and r.
For the NLS equation (2), the Lagrangian density is

L = 1
2 i (u

∗uz − uu∗
z ) −

1
2D|ut |2 + 1

2g|u|4, (15)

and dr is dropped in eq. (14). Generally, in the case of a system of NLS-like
equations for complex variables un(z, t , r), the density is

L = L (un, u∗
n , (un)z , (u

∗
n )z , (un)t , (u

∗
n )t ,∇un,∇u∗

n

)
,

where ∇ is the gradient with respect to the transverse coordinates. In this case,
the equations following from the variational principle, dS/du∗

n = 0, take the form

ð

ðz

ðL
ð
[
(u∗
n )z
] + ð

ðt
ðL

ð
[
(u∗
n )t
] +∇ ·

[
ðL

ð (∇u∗
n )

]
−
ðL
ðu∗
n
= 0. (16)

The Lagrangian representation of the nonlinear wave equations is related to
their Hamiltonian representation, which, for a broad class of equations of the
NLS type, is

(un)z = −i
dH
du∗
n
, (17)

where the functional H{u, u∗} is the Hamiltonian. In particular, for the NLS
equation (2) proper, it is given by the expression (12).
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2, § 1] Introduction 77

In order to apply VA to a given problem, one should insert the adopted ansatz
into the expression (14) and calculate the integral in an analytical form. The
necessity to perform the integration analytically imposes conditions on the choice
of the ansatz: on one hand, it must not be too primitive, in order to have a chance
to accurately approximate basic features of the pulse, and, on the other hand, it
must not be too complex, otherwise VA will be intractable.
If the ansatz contains a set of free parameters pj(z) [for instance, p1 ≡ A,

p2 ≡ a, p3 ≡ b, p4 ≡ ÷ in the case of the ansatz (13)], the calculation
of the integral (14) after the substitution of the ansatz yields an effective
Lagrangian, Leff , which is a function of pj and their derivatives dpj /dz ≡ p′

j (the
derivatives appear because of the presence of the z-derivatives in the Lagrangian
density). For example, the effective Lagrangian obtained by substitution of the
ansatz (13) into the NLS Lagrangian corresponding to the density (15) can be
easily calculated analytically:

L(NLS)eff = −2A2a÷′ −
p2

6
A2a3b′ −

1
3
DA2

a
−
p2

3
DA2a3b2 + 2

3gA
4a. (18)

It is noteworthy that only the z-derivatives of the phase parameters ÷ and b appear
in this expression, and ÷ itself does not appear at all.
The effective Lagrangian gives rise to a set of variational equations for the

variables pj(z),

d
dz
ðLeff

ð
(
p′
j

) − ðLeff
ðpj

= 0, (19)

which can then be solved by means of analytical or numerical methods.
In particular, the system of variational equations generated by the effective
Lagrangian (18) for the NLS soliton will be considered in detail in § 2.
First of all, one should find fixed points (FPs) of the ordinary differential

equation (ODE) system (19), dpj /dz = 0, which correspond to a stationary
soliton of the underlying model. Next, stability of the fixed points against small
perturbations can be analyzed, linearizing eqs. (19) near the FP solutions, which
should predict whether the soliton is expected to be dynamically stable. Full
dynamical solutions to eqs. (19) (rather than linearization around the fixed
points), that correspond to a strong perturbation of the solitons, may also be
of interest from the viewpoint of the underlying model.
Thus, the essence of VA is approximating an unknown field configuration

by an appropriate ansatz, whose free parameters evolve in z according to the
system of ODEs (19). It is necessary to stress that there is no direct formal
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78 Variational methods in nonlinear fiber optics and related fields [2, § 1

relation between the underlying PDEs (for instance, the NLS quation) and the
system of variational equations (19). Thus, VA is always based, to a large
extent, on physical intuition rather than on rigorous mathematical arguments,
and the relevance of the application of a particular variational ansatz to a given
problem can only be checked a posteriori by comparison of the results with
direct numerical simulations of the underlying PDEs. Comparison with direct
simulations is especially necessary if one is dealing with the stability problem:
while the shape of a static soliton may be readily mimicked by a reasonably
chosen ansatz, the approximation can miss a specific perturbation mode leading
to an instability of the soliton; moreover, VA can sometimes introduce a false
instability that the soliton in fact does not have, see § 7.1 below.
Despite its drawbacks, VA turns out to be a very efficient technique, as it

is, as a matter of fact, the only consistent approximation producing analytical
or semi-analytical results for complex dynamical models. As for the necessity
to verify the validity of the results against direct simulations, this does not
devaluate VA, since it is frequently sufficient to perform the comparison at a few
different values of the problem’s control parameters. If the comparison at several
benchmark points corroborates the applicability of VA, then its (semi-)analytical
predictions are reliable enough to describe solitons in broad parametric regions.

1.2.2. Generalization to models with losses and gain or drive

1.2.2.1. Models with intrinsic gain. A physically important and relatively
simple generalization of the NLS equation is that which includes losses and
amplification. In the general case, it can be written in the form

iuz + 1
2Dutt + g|u|2u = ia(z) u, (20)

where the coefficient a(z) includes a constant negative part −a0 accounting for
fiber losses, and an array of d-functions accounting for the action of strongly
localized amplifiers. Thus, in the typical case,

a(z) = −a0 + g
∑
n

d(z − zan), (21)

where g > 0 is the gain provided by an individual amplifier, and za is the
amplification spacing. In the general case, with an arbitrary density a(z) of the
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2, § 1] Introduction 79

distributed losses and gain, the term on the right-hand side of eq. (20) can be
eliminated by means of a transformation

u(z, t) = exp
(∫ z

0
a(z) dz

)
· v(z, t), (22)

which converts eq. (20) into the NLS equation (2) for the field v(z, t) with a
variable nonlinear coefficient,

ivz + 1
2Dvtt + g exp

(
2
∫ z

0
a(z) dz

)
· |u|2u = 0 (23)

(Bullough, Fordy and Manakov [1982]). An advantage of this transformed
equation is that, unlike the underlying equation (20), it admits a variational
representation with the same structure of the Lagrangian density as in eq. (15),
g being replaced by

g(z) ≡ g exp
(
2
∫ z

0
a(z) dz

)
. (24)

Then, ansätze 1 of the usual type, e.g., eq. (13), may be used to approximate the
field v(z, t).

1.2.2.2. Models with an external drive. Another type of models describe systems
in which dissipation is compensated not by the intrinsic gain, but rather by an
external drive. The first model of this type was introduced by Kaup and Newell
[1978]:

iut + 1
2uxx + |u|2u = −iau + û exp(−iwt), (25)

where a > 0 is a dissipation constant, and û and w are the amplitude and
frequency of the AC drive applied to the system (this equation is written in
“non-optical” notation, as it is less relevant to optics than to other applications).
By means of an obvious transformation,

u(x, t) ≡ v(x, t) exp(−iwt), (26)

eq. (25) can be cast into a more convenient time-independent form,

ivt + 1
2vxx +

(
w + |u|2) u = −iau + û. (27)

Finally, the dissipative term may be removed from eq. (27) by means of the
same transformation (22) as above, leading to an equation representable in the

1 The word ansätze is plural for ansatz (which is a synonym for a trial wave form in the variational
approximation).
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Lagrangian form, which opens the way to apply VA to it. In particular, driving
and stabilization of a cnoidal wave, i.e., as a matter of fact, a periodic array of
NLS solitons, was considered, following this way, by Friedland [1998].
Another possibility is to drive solitons parametrically, as described by

the following version of the perturbed NLS equation (see, e.g., a paper by
Barashenkov, Bogdan and Korobov [1991], where VA was used),

iut + 1
2uxx + |u|2u = −iau + ûu∗ exp(−2iwt), (28)

the asterisk standing for the complex conjugation. The same transformation (26)
as above casts eq. (28) into a time-independent form,

iut + 1
2uxx +

(
w + |u|2) u = −iau + ûu∗. (29)

Note that the last term on the rhs of eq. (29) can be derived from an extra

term in the Lagrangian density, DL = 1
2û
[
u2 + (u∗)2

]
. Therefore, subsequent

application of the transformation (22) makes it possible to present eq. (29) in a
fully Lagrangian form.

1.3. Comparison with other approximations

Application of VA to optical solitons was not the first instance where this
technique was used. Earlier, it was applied by Whitham [1974] to the cnoidal
waves in the Korteweg–de Vries (KdV) equation (recall that these waves
are periodic arrays of solitons). An exact solution for cnoidal waves in the
KdV equation is known in terms of elliptic functions. However, an approximation
is necessary when considering a case where parameters of the cnoidal wave
are initially subjected to a long-wave modulation. In that case, the ansatz is
based on the exact solution, whose arbitrary constant parameters are allowed
to be slowly varying functions of the coordinate and time. Upon substituting
the ansatz into the corresponding Lagrangian, one can explicitly perform
the integration over the rapid variables, arriving at an effective Lagrangian
for the slowly varying parameters. Then, the effective Lagrangian yields a
system of so-called Whitham’s equations (which are also PDEs, but essentially
simpler than the underlying KdV equation) governing the slow evolution. The
Whitham equations can be used for analysis of various dynamical processes
involving the cnoidal waves, e.g., decay of an initial configuration in the form
of a step (see chapter 4 in the book by Zakharov, Manakov, Novikov and
Pitaevskii [1980]).
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2, § 1] Introduction 81

As concerns solitary waves proper in models different from those occurring
in optics, VA was applied in a systematic way by Gorshkov, Ostrovsky and
Pelinovsky [1974] and Gorshkov and Ostrovsky [1981]. Models studied in
those works were similar to the KdV equation (but nonintegrable). A typical
problem was interaction between far-separated solitons. Using the Lagrangian
representation of the underlying model, an effective potential of the interaction
between solitons was derived.
Mathematical models for solitons in plasmas are sometimes similar to those

in nonlinear optics. In a systematic way, the application of VA to plasma
solitons was developed by Bondeson, Lisak and Anderson [1979]. In that work,
a generalization of VA allowing to incorporate effects produced by dissipative
terms, that cannot be directly derived from the Lagrangian representation, was
put forward too.
It should be stressed that when one is dealing with slightly perturbed solitons

(for instance, in the case of interactions between far-separated ones), the use of
VA is quite legitimate but not necessary. Instead, one may use direct perturbative
methods. The most powerful among such methods is based on IST, provided
that the underlying PDE is a perturbed version of an integrable equation. This
is indeed the case for many problems in nonlinear optics, when the model is
described by a perturbed NLS equation. The IST-based perturbation theory was
first elaborated by Kaup [1976] (see also a paper by Kaup and Newell [1978])
and, independently, by Karpman, Maslov, and Solov’ev (see an early review by
Karpman [1979] and a later important paper by Karpman and Solov’ev [1981],
in which the interaction between NLS solitons was treated as a perturbation).
Many results obtained by means of the perturbation theory based on IST
were collected in a review by Kivshar and Malomed [1989a]. Second-order
perturbation effects for the solitons in optical fibers may be taken into regard
to improve the accuracy of this technique; this was systematically investigated
by Kaup [1991].
As a matter of fact, VA belongs to a class of nonrigorous approximate methods

whose objective is to reduce complex dynamics described by PDEs to a relatively
simple system of a few ODEs. All these methods aim to “project” the full
dynamics onto a finite-mode space, or, in other words, truncate a system with
infinitely many degrees of freedom to a finite-dimensional one. This general
procedure is often called Galerkin truncation (its mathematically rigorous
description can be found in a book by Blanchard and Brüning [1992]). It applies
not only to conservative systems which admit the Lagrangian representation,
but also to dissipative and mixed conservative–dissipative ones. In some cases –
typically, slightly above a threshold of an instability that gives rise to formation
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82 Variational methods in nonlinear fiber optics and related fields [2, § 1

of nontrivial patterns – the truncation of dissipative or mixed systems can
be performed in a consistent way, using a corresponding small parameter
(overcriticality). Examples are the derivation, by Malomed and Nepomnyashchy
[1990] in the 1D case, and by Zaks, Nepomnyashchy and Malomed [1996]
in the 2D case, of a finite-dimensional dynamical system to approximate the
pattern formation in the complex cubic Ginzburg–Landau equation with periodic
boundary conditions just above the threshold of the modulational instability
of a finite-amplitude spatially uniform state. However, in most cases no small
parameter is available, and the Galerkin truncation is, as a matter of fact, based
solely on intuition.
A specific version of the truncation is the method of integral momenta, when

the underlying PDE is replaced by several relations obtained, after substituting
an adopted ansatz for the approximate solution, by multiplication of the equation
by certain weight functions and integration of the resultant expression over
the temporal and/or transverse spatial variables. The momenta method in its
various forms has been used widely in various problems of nonlinear optics,
e.g., by Caglioti, Trillo, Wabnitz, Crossignani and DiPorto [1990], Romagnoli,
Trillo and Wabnitz [1992] and Maimistov [1993] for the study of soliton
dynamics in dual-core fibers, by Akhmediev and Soto-Crespo [1994] for the
description of soliton dynamics in a bimodal birefringent fiber, and by Turitsyn,
Schaefer and Mezentsev [1998] and Bélanger and Paré [1999] in the study
of pulse propagation in dispersion-managed fiber links. A similar method was
employed by Barashenkov, Smirnov and Alexeeva [1998] and Barashenkov
and Zemlyanaya [1999] to consider bound states of solitons in the driven
NLS equations (25) and (28).
The VA technique does not have a rigorous justification either. Nevertheless,

it is essentially less arbitrary than other truncation-based approximations, as
it is based on the variational principle, which is known to be the most
fundamental one unifying various physical models. In this connection, it is
relevant to mention that VA for linear physical systems (unlike nonlinear ones
which are the subject of the present review) has been developed long ago
under the name of the Rayleigh–Ritz optimization procedure, reviewed by
Gerjuoy, Rau and Spruch [1983], that has well-known applications, e.g., to
finding stationary wave functions in quantum mechanics (Landau and Lifshitz
[1977]). It is relevant to mention that essentially the same method was used
by Barashenkov, Bogdan and Korobov [1991] to analyze the stability, in terms
of the corresponding eigenmodes, of a soliton in the parametrically driven
NLS equation (28), and by Barashenkov, Gocheva, Makhankov and Puzynin
[1989] in their consideration of the stability of dark solitons. A rigorous
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mathematical account of the Rayleigh–Ritz procedure is given in the book by
Blanchard and Brüning [1992].

1.4. Objective of this review

There is a huge number of papers using VA in various problems of nonlinear
optics and in other areas of “nonlinear physics”. The present review, being
limited in size, is necessarily limited in scope too. It does not aim to give
a comprehensive review of all applications of VA to optics, nor does it give
references to all relevant publications. Instead, the objective is to collect most
important examples of the application of variational methods to solitons in
optical fibers, and a few examples concerning solitons in other optical media
(chiefly, in planar waveguides), which can be used as paradigms for many
other applications. The review is focused on solitons (this term is realized in
a loose mathematical sense, i.e., it does not imply integrability of the underlying
models), as they are the most natural objects for the application of variational
methods, and the absolute majority of results have been obtained for solitons.
Fibers are selected as the main medium to be considered in this review, as in
this field variational methods have been developed better than in any other,
and fibers are most important for applications. In § 2, the consideration will
start with the most fundamental case of a single soliton in a uniform nonlinear
optical fiber. Then, at the end of § 2 and in subsequent sections, more complex
models will be introduced and considered, increasing the number of solitons, or
the number of equations, or considering nonuniform optical media. In several
cases, which are fundamentally important for applications, the presentation is
not limited solely to results which can be obtained by means of VA, but a
more comprehensive account of the problem as a whole is given; examples are
bound states of solitons (§ 2.3.2), and generation of solitons of different types
by a pulse passing a point where the local dispersion changes sign from normal
to anomalous (§ 5.2).
Three large topics belonging to the field of nonlinear optics are not

included in this review. These are systems with quadratic ( c (2)) nonlinearities
(second-harmonic-generating media), spatiotemporal solitons (“light bullets”),
and discrete systems. The first topic has recently been reviewed in a systematic
way by Etrich, Lederer, Malomed, T. Peschel and U. Peschel [2000]. That
review includes, inter alia, a thorough account of the application of VA
to c (2) systems. Additionally, variational methods for c (2) models were the
main subject of another (more special) recent review by Malomed [2000].
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In particular, as concerns “light bullets”, a large part of the theoretical
analysis, and the only experimental observations of the spatiotemporal solitons
reported thus far (by Liu, Qian and Wise [1999b] and Liu, Beckwitt and Wise
[2000]), pertain to c (2) media. The theoretical description of c (2) spatiotemporal
solitons relies heavily upon VA (Malomed, Drummond, He, Berntson, Anderson
and Lisak [1997]), and this was included in the above-mentioned recent
reviews.
Variational techniques prove to be very useful also for consideration of

multidimensional solitons in media with different nonlinearities, such as cubic–
quintic (Quiroga-Teixeiro and Michinel [1997], Desyatnikov, Maimistov and
Malomed [2000]). In fact, a review of spatiotemporal solitons seems to be
necessary, but it cannot be given in the present article due to length limitations.
As for discrete systems, this is a large field which calls for a separate review.

Variational methods are frequently used in this field too (see, e.g., a paper by
Malomed and Weinstein [1996]), but their technical implementation is quite
different from what is considered in the present article.
Lastly, it is necessary to mention that variational techniques, similar to

those developed in nonlinear optics, find applications to the description of
soliton-like objects in other physical systems. An important example is the
Bose–Einstein condensate, i.e., a cloud of ultracold atoms obeying the Bose
quantum statistics and held together in a trap. The corresponding model is
based on the Gross–Pitaevskii equation, which, as a matter of fact, is the
three-dimensional NLS equation with an external potential representing the
trap. The cubic term in the Gross–Pitaevskii equation has, in most cases, a
sign corresponding to repulsive interaction between atoms in the condensate,
although it may sometimes be attractive, then making the condensate prone
to collapse. VA for the Bose–Einstein condensates with both repulsive and
attractive interactions was developed by Dodd [1996], Pérez-Garcı́a, Michinel,
Cirac, Lewenstein and Zoller [1997], and Pérez-Garcı́a, Konotop and Garcı́a-
Ripoll [2000].
Another noteworthy example of the application of an “optical-like” VA to non-

optical systems is the description of intrinsic vibrations of an (effectively) one-
dimensional soliton in the Zakharov system, which is a fundamental model of the
interaction between electron (Langmuir) and ion-acoustic waves in plasmas. As
was demonstrated by Malomed, Anderson, Lisak, Quiroga-Teixeiro and Stenflo
[1997], VA reduces the internal dynamics of this soliton to a Hamiltonian system
with two degrees of freedom, which, in particular, may give rise to dynamical
chaos.
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§ 2. Dynamics of solitons in a single-mode nonlinear optical fiber or
waveguide

2.1. A soliton in an optical fiber

2.1.1. Anderson approximation for a nonstationary NLS soliton

The application of VA to nonlinear optics was initiated by Anderson [1983] when
he considered the evolution of a strongly perturbed NLS soliton governed by
eq. (2). In that pioneering work, a Gaussian ansatz for the soliton was used. While
this type of approximation is very useful in the case of dispersion management
(see § 5), the most appropriate ansatz for a soliton in a uniform optical fiber is
the hyperbolic-secant-based one (13). In fact, the variational equations derived
by Anderson [1983] on the basis of the Gaussian ansatz are very close to those
which will be displayed below for the ansatz (13).
The effective Lagrangian for this ansatz is given by the expression (18).

The corresponding system of variational equations (19) was first derived by
Anderson, Lisak and Reichel [1988a]. After some transformations, the equations
can be conveniently cast into the following form, which is also valid in the
important case when the dispersion coefficient D in eq. (2) is a function of z
(Malomed [1993]):

d
dz

(
A2a
)
= 0, (30)

b =
1
2Da

da
dz
, (31)

d
dz

(
1
D

da
dz

)
= −

ðUeff (a)
ða

, (32)

Ueff (a) ≡ 2
p2

(
D

a2
− 2g

E

a

)
, E ≡ A2a, (33)

and a separate equation for the phase ÷,

d÷
dz
=
p2

12
a2
(
db
dz
+ 2Db2

)
+ 1
6Da

−2 −
2
3
gA2. (34)

First of all, eq. (30) implies the existence of the dynamical invariant E ≡ A2a.
The conservation of this quantity is a straightforward manifestation of the
conservation of the energy (10) in the NLS equation. Indeed, the substitution
of the ansatz (13) into the definition of the energy yields A2a.
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Fig. 1. Shape of the effective potential (33) for D = 1, E = 4p2 (the large value of E serves to
emphasize the characteristic shape of the potential).

An essential remark concerning the formal properties of VA is that one may
replace the combination A2a everywhere in the effective Lagrangian (18) by
constant E, which is not subject to the variation, and then perform the variation
(after this, the phase-evolution equation (34) is derived by the variation in E).
The resultant equations have exactly the same form as above. This feature makes
it possible to simplify the derivation of the variational equations.
Equation (31) shows that the intrinsic chirp of the soliton is generated by its

deformation (change of width). This equation also explains why the chirp must
be included into any self-consistent ansatz: otherwise, intrinsic evolution of the
soliton, the study of which is the basic objective of VA, cannot be described.
Equations (32) and (33) demonstrate that the evolution of the soliton’s width

can be represented, in closed form, as the motion of a Newtonian particle with
mass D−1 and coordinate a(z) in a potential well Ueff (a), the shape of which is
shown in fig. 1, while the propagation distance z plays the role of time. In fact,
as stressed by Abdullaev and Caputo [1998], the effective potential Ueff (a) is
exactly the same as in the classical Kepler problem (see a book by Landau and
Lifshitz [1975]). Note that when the dispersion coefficient D is a function of z,
both the particle’s mass and the potential depend explicitly on “time”.
There is an equilibrium position

aeq =
D

gE
(35)

at the bottom of the potential well (33) (if D = const.). Comparison with
expression (6) shows that the ansatz (13) with a = aeq coincides exactly with the
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unperturbed soliton solution, i.e., VA correctly reproduces the exact stationary
soliton. The Hamiltonian corresponding to eq. (32) is H = (1/2D) (da/dz)2 +
Ueff (a), and, as demonstrated by Anderson, Lisak and Reichel [1988b], it can
be obtained in exactly this form by the substitution of ansatz (13) into the
Hamiltonian (12) of the underlying NLS equation. If D = const., the Hamiltonian
is a dynamical invariant of eq. (32). Dynamical trajectories with H < 0 and H > 0
correspond to the motion of a particle which, respectively, is trapped in the
potential well or escapes to infinity.
Oscillations of the trapped particle correspond to internal vibrations of a

soliton-like pulse which is initially chirped and/or has a relation between its
amplitude and width different from that for the exact soliton solution. Near the
equilibrium position (35), oscillations with a small amplitude a(0)1 have the form

a(z) = aeq + a
(0)
1 sin(K0z + d), K0 = 2

(gE)2

pD
. (36)

Here, d is an arbitrary constant, and the spatial period of the small oscillations,
zosc ≡ 2p /K0 = p2D/ (gE)2, is not much different from the soliton period (8) of
the unperturbed soliton, which, in the notation used in eq. (36), is z0 = pD/ (gE)2

(in fact, 4z0 is more appropriate for the comparison with zosc, as z0 proper
corresponds, by definition, to the change of the soliton’s internal phase by 1

2p ,
rather than 2p ).
Exact results for eq. (32) are available too. In particular, an expression for the

spatial frequency K of anharmonic oscillations of the trapped particle can be
found in papers by Afanasjev, Malomed, Chu and Islam [1998] and Abdullaev
and Caputo [1998]. It takes a compact form in terms of the Hamiltonian H ,

K = p2
√
D|H |3/2√
2gE

, (37)

and attains the maximum value K0 given by eq. (36) at H = −2(gE/p )2D−1, that
corresponds to the bottom of the potential well. Exact solutions to the effective
equation of motion (32) with the potential (33) can be represented in a parametric
form, using known results for the above-mentioned Kepler problem (Abdullaev
and Caputo [1998]). Setting D = g = 1, the exact solutions describing oscillations
of the particle trapped in the potential well are

a =
2E
p2|H | (1 − e0 cos x), Kz = x − e0 sin x , (38)

where K is the frequency (37), e0 ≡ √
1 − p2|H |/2E2 plays the role of the

eccentricity in the Kepler problem, and x is an auxiliary dynamical variable (the
parameter).
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Persistent internal vibrations of a perturbed NLS soliton can be easily observed
in direct simulations of eq. (2); see, e.g., detailed numerical results in the paper
by Kath and Smyth [1995]. In fact, the explanation of the soliton’s vibrations
as oscillations of the trapped particle in terms of the ansatz was the first result
of VA explaining a nontrivial dynamical behavior of the perturbed soliton; note
that, while this result is obtained by means of VA in quite a simple way, it is
not straightforward to predict the vibrations of perturbed solitons by means of
the rigorous IST formalism.
The regime of motion with H > 0, corresponding to a(z) → ∞, implies

unlimited spreading out of the pulse, i.e., as a matter of fact, its decay into
radiation. Thus, VA can indirectly predict transformation of the pulse into
radiation, although the ansatz does not take into regard radiation degrees of
freedom. The separatrix H = 0 is a border between the pulses that are predicted
to self-trap into soliton-like states and those which decay completely.
For an initial unchirped pulse (13) with b = 0 and arbitrary values of the

amplitude A0 and width a0, the soliton content can be found in an exact form,
in terms of IST, from a solution to the corresponding ZS equations (Satsuma and
Yajima [1974]). An important exact result is that the pulse produces a soliton,
in the limit z → ∞, provided that

A0a0 >
1
2

√
D/g . (39)

On the other hand, the condition H < 0, which is necessary for the formation of
a soliton-like pulse in terms of VA, yields, for the same initial configuration,

A0a0 >
√
D/2g . (40)

Comparing this to the exact result (39), one concludes that VA underestimates
the soliton’s stability, in terms of the soliton-formation threshold, by a factor

√
2.

An empirical modification of the variational technique, which can remedy this
shortcoming, was proposed by Anderson, Lisak and Reichel [1988a].

2.1.2. Solitons in extended versions of the NLS equation

It is well known that, even if an optical fiber has no losses, the NLS equation
for very narrow solitons (roughly speaking, with temporal width < 1 ps and,
accordingly, with high power) should be modified against its classical integrable
version (2). Additional terms take into regard the third-order dispersion (TOD)
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with a corresponding coefficient D̃ and, sometimes, a higher-order (quintic)
correction to the Kerr nonlinearity, with a coefficient g̃:

iuz + 1
2Dutt + g|u|2u = iD̃uttt + g̃|u|4u. (41)

If only the quintic term is added, the corresponding cubic–quintic (CQ)
NLS equation can be rescaled into a normalized form,

iuz + 1
2utt + |u|2u − |u|4u = 0. (42)

Equation (42) is not integrable, but it has an exact single-soliton solution
(Kh.I. Pushkarov, Pushkarov and Tomov [1979]; see also D.I. Pushkarov and
Tanev [1996]),

u = eikz · 2
√
k√

1 +
√
1 − 16

3 k cosh
(
2
√
2kt
) , (43)

where k is the propagation constant, taking values 0 < k < 3
16 .

As the quintic term in eq. (42) corresponds to an extra term −13 |u|6 in the
Lagrangian density for the NLS equation, VA can be developed to describe
internal vibrations of a perturbed soliton in the CQ equation, as was done by
Kumar, Sarkar and Ghatak [1986] [they also took into regard a dissipative term,
eliminating it by means of the transformation (22)] and De Angelis [1994] on
the basis of a Gaussian ansatz. In this connection, it is relevant to mention that,
for the NLS equation with a general nonlinear term |u|qu, where q is an arbitrary
positive number, Cooper, Shepard, Lucheroni and Sodano [1993] developed VA
based on a super-Gaussian ansatz, assuming

u(z, t) = A(z) exp

[
(−1 + ib(z))

∣∣∣∣ t
W (z)

∣∣∣∣2n
]
, (44)

where W (z) and b(z) are real width and chirp variables, A(z) is a complex
amplitude, and n is an appropriately chosen positive constant. This ansatz makes
it possible to analyze not only regular dynamics of a perturbed soliton, but
also spatiotemporal collapse of the pulse, i.e., formation of a singularity after
a finite propagation distance, which takes place (in the one-dimensional case)
if q � 4, see a review by Bergé [1998] (VA for describing the collapse of
three-dimensional pulses in the usual cubic NLS equation was elaborated by
Desaix, Anderson and Lisak [1991]). A general super-Gaussian ansatz was also
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used by Dimitrevski, Reimhult, Svensson, Öhgren, Anderson, Berntson, Lisak
and Quiroga-Teixeiro [1998] to analyze dynamics of axisymmetric beams in a
bulk medium with the CQ nonlinearity (which, in fact, amounts to considering
the CQ NLS equation with two transverse coordinates). Lastly, it is relevant
to mention that various forms of VA were also applied to construct spinning
solitons, i.e., solitons with internal vorticity, in the two-dimensional (Wright,
Lawrence, Torruellas and Stegeman [1996], Quiroga-Teixeiro and Michinel
[1997]) and three-dimensional (Desyatnikov, Maimistov and Malomed [2000])
NLS equations with the CQ nonlinearity.
The TOD term in eq. (41) can also be derived from an extra term in the

Lagrangian density, viz., (i/2)D̃ (uu∗
ttt − u

∗uttt ), hence VA applies to this version
of the NLS equation too. It is necessary to stress that, strictly speaking, the
NLS equation with this additional term has no soliton solution, as any solitary
pulse gradually decays into radiation, due to the form of the equation’s linear
spectrum (Wai, Chen and Lee [1990]). Nevertheless, if the TOD coefficient is
small enough, the rate of radiative decay is exponentially small, and it then makes
sense to consider evolution of a soliton in this equation. A VA-based approach
to the problem was developed by Desaix, Anderson and Lisak [1990].
As the NLS equation upon addition of the TOD term loses its invariance with

respect to a sign change of t , an appropriate ansatz should not be even in t . In
the above-mentioned paper, the ansatz was taken as

u(z, t) = A(z) sech(t − T (z))

× exp[−i(t − T (z))W(z) − iM (z) tanh(t − T (z)) + ib(z)(t − T (z))2],
(45)

where the amplitude A(z) is complex, and all the other variational parameters
are real, cf. eq. (13). Consideration of evolution equations for the variational
parameters has demonstrated that the soliton shifts itself, in the frequency
domain, deeper into the anomalous-dispersion region, so that the relative size
of the TOD term becomes small, and the soliton becomes close to its ordinary
NLS counterpart. This result is, generally, confirmed by numerical simulations
reported by Wai, Menyuk, Chen and Lee [1987], although the simulations also
demonstrate that a relatively small wave packet separates from the initial pulse
and then drifts in the opposite direction, deeper into the normal-dispersion
region, where it completely decays into radiation.

2.1.3. Radiative losses and damping of internal vibrations of a soliton

The most essential limitation of VA is the fact that a simple ansatz, like that
given by eq. (13), completely ignores radiation degrees of freedom of the field.

Final proof, Progress in Optics 43, p. 90



2, § 2] Dynamics of solitons in a single-mode nonlinear optical fiber or waveguide 91

In fact, as known from both the exact solution produced by IST and from
numerical simulations, a perturbed soliton, while vibrating in accord with the
VA prediction, is also emitting small-amplitude radiation waves, which gives
rise to gradual decrease of the vibration amplitude. The exact result of IST is
that, at z → ∞, the pulse will shed a finite fraction of its energy as radiation,
and will eventually assume the form of an exact soliton with a reduced value of
the energy.
A modification of the ansatz (13) that accounts for the radiation background

around the soliton was proposed by Kath and Smyth [1995]:

uansatz(z, t) = [A sech(t /a) + ig] exp(i÷ + ibt2), (46)

where g(z) is a real amplitude of the radiation background that is assumed
to be uniform (t-independent) across the soliton; it was also assumed that
|g| � A, i.e., the background’s amplitude is much smaller than that of the soliton.
Of course, the substitution of the modified ansatz (46) into the Lagrangian
density (15) and subsequent integration in the expression (14) for the full
Lagrangian will give rise to a divergence as the term ~ g does not vanish as
|t | → ∞. Therefore, the integration was confined to a finite interval |t | < l;
in particular, the net energy of the wave field is then A2a + 1

2g
2l. To select

the parameter l, the condition was adopted that the (spatial) frequency of the
small oscillations of the amplitude of the slightly perturbed soliton matches the
frequency in eq. (36), which yields l = 3p2/8aeq, where aeq is the equilibrium
width (35), and it is implied that D = g = 1 in eq. (2).
The variational equations derived by means of the ansatz (46) were further

amended by adding, to an equation accounting for the energy conservation, an
extra term that directly took into regard radiation losses, as calculated from
a linearized equation for the radiation wave far from the soliton’s body. The
modified variational equations [which turn out to be much more complicated than
the system of eqs. (30) through (34) produced by the Anderson approximation]
were then solved numerically, showing not only persistent internal vibrations of
a perturbed NLS soliton, but also gradual damping of the vibrations due to the
emission of radiation. Comparison with direct numerical simulations of eq. (2)
has demonstrated that this modified version of VA yields very good accuracy in
the description of the soliton’s dynamics.
Direct comparison of the VA predictions for the internal vibrations of the

NLS solitons with direct simulations of eq. (2) was also a subject of a work
by Kuznetsov, Mikhailov and Shimokhin [1995]. In this paper, it was claimed
that VA is essentially wrong, as the frequency of the small vibrations revealed
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by extremely long simulations was quite different from the expression given by
eq. (36). However, this conclusion was a result of an apparent misunderstanding:
in fact, the numerical results presented in that work pertained to a very late
stage of the evolution, when the emission of radiation by the vibrating pulse has
actually ended, and the observed (extremely small) oscillations of the soliton’s
amplitude were not vibrations of the perturbed pulse, but simply beatings
between the stationary soliton and a very small low-frequency component of
the radiation wave which had not yet separated from the soliton. Of course, the
beating frequency is different from that of the vibrations of a pulse consisting
of the soliton and trapped radiation.

2.1.4. The soliton-compression problem and modified variational ansätze

The Anderson approximation, based on the simple ansatz (13) or its Gaussian
counterpart used in the first paper by Anderson [1983], can be better adjusted
to specific problems without adding radiative degrees of freedom. A particular
problem important for applications is compression of pulses based on the so-
called soliton effect, i.e., passing a stationary (fundamental) soliton to a fiber
with a smaller value of the dispersion coefficient, where the pulse will be a
higher-order soliton and will start to self-compress, developing internal chirp
(an allied problem is the investigation of conditions for wavebreaking-free
propagation of nonsoliton pulses in an optical fiber, which was earlier considered
by Anderson, Desaix, Karlsson, Lisak and Quiroga-Teixeiro [1993]). For a given
ratio N 2 ≡ D1/D2 of the dispersion coefficients D1 in the fiber in which the
soliton was formed as a fundamental one and D2 in the compressing fiber (or,
in terms of the soliton effect, for a given order N of the initial N -soliton), and
for given energy of the soliton, the most important characteristic of the process
is the optimum compression length L of the second fiber at which the narrowest
chirp-free pulse is expected to come out. To minimize the number of arbitrary
parameters, one can take eq. (2) with D = g ≡ 1, and consider compression of
the initial N -soliton pulse in which the width is set to be 1,

u0 = N sech t , (47)

so that E ≡ N 2. Then, the optimum compression length should be found as a
function of the single free dimensionless parameter E.
This problem was considered in detail by Afanasjev, Malomed, Chu and Islam

[1998], who compared, against direct numerical results, predictions provided by
the traditional ansatz (13) and by a modified one,

u = A sech(t /a) exp[i÷ + ib tanh2(t /a)], (48)
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Fig. 2. Optimum compression length for the initial N -soliton pulse (47) in a fiber governed by eq. (2)
with D = g = 1 vs. energy E: (1) prediction based on the traditional ansatz (13); (2,3) predictions
produced by the modified ansätze (51) and (48); dots represent results of direct simulations,

connected by an interpolating curve.

where b is the chirp parameter. The introduction of this ansatz was suggested
by direct simulations, which demonstrated that the intrinsic phase structure of
the compressed pulse was very different from the parabolic function assumed by
eq. (13). Instead, the phase distribution is parabolic near the soliton’s center, and
saturates at a constant value far from the soliton’s center, which is mimicked by
the modified ansatz (48).
VA based on the usual ansatz (13) predicts compression of the initial N -soliton

pulse (decreasing a(z)) up to the turning point z = p /K , where K is the spatial
frequency of the soliton’s vibrations given by eq. (37) with H = (2/p2)(1 − 2E).
Thus, z = p /K is the optimum compression length as predicted by the usual
ansatz. An explicit formula for the predicted optimum compression length is

L = 1
2p

2E
√
2E − 1. (49)

It has no meaning for E < 1, as in this case the deformed soliton will be initially
expanding, rather than compressing. VA also predicts the degree of compression,

a ≡ a(z = 0)
a(z = L)

= 2E − 1. (50)

In fig. 2, the dependence L(E) as given by eq. (49) (curve 1) is displayed vs. the
dependence obtained by direct simulations of the NLS equation with the initial
conditions (47). The numerical results are represented by dots connected by an
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interpolating curve. The two curves are quite close at E � 2, which corresponds
to small compression degrees, but for larger E the actual optimum compression
length is essentially smaller than the predicted value. For the case of relatively
small compression rates, a very detailed comparison between direct numerical
simulations of the N -soliton compression and the corresponding predictions of
the usual version of VA, based on the ansatz (13), has been given by Quiroga-
Teixeiro, Anderson, Berntson and Lisak [1995].
To improve VA in the case of large compression rates, the modified ansatz (48)

was tried, along with the following one:

u = A[sech(t /a)]1 + ib ei÷ (51)

with a real chirp parameter b and the phase b ln(sech(t /a)) which is growing
linearly at |t | � a, i.e., it is sort of intermediate between the phases in
eqs. (13) and (48). Note that this ansatz follows the pattern of the initial pulse
configuration u0 = A[sech(t /a)]1 + ib, which is the most general one for which the
ZS equations can be solved in an exact form (Maimistov and Sklyarov [1987],
Grünbaum [1989]).
The ansatz (51) gives rise to the effective Lagrangian (cf. eq. 18)

Leff = −
Eb

a
a′ −

1
3
Eb2

a2
−
1
3
E

a2
+
2
3
E2

a
, (52)

and a set of evolutional equations that reduces to

b = −32a
da
dz
, a′′ =

4
9

(
1
a3
−
E

a2

)
. (53)

Comparison with eqs. (32) and (33) shows that, although the expression for the
chirp parameter is different from eq. (31), the evolution equation for the soliton’s
width keeps the same form of the Newton equation of motion for a particle
with a coordinate a(z) in the Kepler-problem potential (33), the only difference
being a change of the particle’s mass from 1 to m(1)eff = 9/p

2 ≈ 0.912 (recall
we now set D = g ≡ 1). In terms of the plot L(E), this difference amounts to
a simple rescaling: the original curve 1 in fig. 2 should be uniformly stretched
in the horizontal direction by the factor (m(1)eff )

−1/2 ≈ 1.047, which gives rise to
curve 2. This minor change renders the theoretical prediction slightly closer to
the numerical data at E � 2, but it does not remedy the major discrepancy at
larger values of E.
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Fig. 3. Intensity distribution |u|2 in a pulse with energy E = 5.5 at point z = 0.5, close to the
optimum compression point, as predicted by the modified variational ansatz (48) (dashed curve) and

as per direct simulations (solid curve).

The effective Lagrangian for the modified ansatz (48) is

Leff =
2
3
Eb

a
a′ −

32
105

Eb2

a2
−
1
3
E

a2
+
2
3
E2

a
, (54)

producing the evolution equations (cf. eqs. 53, 53)

b = 35
32a a

′, a′′ =
32
35

(
1
a3
−
E

a2

)
. (55)

Thus, the evolution equation for a(z) can again be obtained from the effective
potential (33), the corresponding effective mass being m(2)eff = 35/8p

2 ≈ 0.443.

Its drastic difference from m(1)eff , corresponding to the ansatz (51), and from

m(0)eff ≡ 1, corresponding to the traditional ansatz, is noteworthy. The change in
the curve L(E) produced by the new value of the effective mass again amounts
to stretching, this time by a factor (m(1)eff )

−1/2 ≈ 1.502, yielding curve 3 in fig. 2.
An immediate conclusion is that the new curve is much worse than the previous
ones at E � 2; in the range 2 � E � 3.5 the numerical data fall between
curves 1 and 3; and at E � 4 the modified ansatz (48) definitely gives a better
approximation.
To directly illustrate the strong compression of the soliton, we display in fig. 3

its intensity profile |u(t)|2 at a point close to the optimum compression length,
for E = 5.5. As one sees, this profile is reasonably well approximated by the
modified ansatz (48), while the traditional ansatz (13) predicts in this case a
profile which is completely off the actual one.
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Fig. 4. (a) Peak power and (b) width of a pulse with energy E = 5.5 vs. propagation distance.
The solid and dotted curves display, respectively, direct numerical results and analytical predictions
produced by the modified variational ansatz (48). Two full compression–dilatation cycles are shown.

Further information about the accuracy (or inaccuracy) of the modified
version of VA is given by the dependences of the pulse’s peak intensity
and width on the propagation distance, displayed in fig. 4 for E = 5.5.
A general inference suggested by these plots is that, at this quite large degree
of compression, the modified VA overestimates the peak intensity very close to
the optimum compression point, but, otherwise, provides a reasonable analytical
approximation, and is quite accurate in predicting the optimum compression
length, which is most important for applications.
In a recent work, Smyth [2000] has revisited detailed comparison of direct

numerical simulations of the compression problem with results predicted by VA,
adding the above-mentioned sophisticated version of VA worked out by Kath
and Smyth [1995], which includes the small radiation background. A conclusion
was that, while the modified ansatz (48) and the ansatz including the radiation
predict the optimum compression length equally accurately for large values of
the compression degree, the latter ansatz predicts the amplitude and width of the
compressed pulse, and the phase distribution in it, essentially better.
Lastly, it is relevant to mention the problem of soliton compression in

conjugation with the action of localized or distributed amplification, which is
described by the modified NLS equation (20). Detailed investigations performed
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by Quiroga-Teixeiro, Anderson, Andrekson, Berntson and Lisak [1996] and
by Chu, Malomed and Peng [1996] have demonstrated that VA based on the
ansatz of the usual type (13), taking into account the effective variable nonlinear
coefficient (24), provides for sufficiently accurate predictions for compression of
the soliton in such a setting.

2.1.5. Compression of a soliton in a three-fiber configuration
The pulse-compression technique described in the previous subsection does not
make it possible to transform a given soliton into a compressed fundamental
soliton corresponding to the smaller value of the dispersion coefficient. Instead,
it produces a vibrating chirped pulse. The problem of compression of solitons
without disturbing their fundamental character is of great interest. As follows
from the general expression (6) for the soliton, its width can be presented in
terms of the energy as W ≡ √

D/h = D/gE; hence, if the fundamental soliton is
compressed by lowering the dispersion coefficient from D1 to D2, without energy
loss and at a constant value of the nonlinearity coefficient, the ideal compression
factor is(

W1
W2

)
E = const.

=
D1
D2
. (56)

One possibility to achieve nearly ideal compression is to use a dispersion-
decreasing fiber with a gradually decreasing local dispersion coefficient, which
is able to perform adiabatic compression of a soliton, as described below
in § 5.1. However, a much simpler possibility is to use the configuration
proposed by Anderson, Lisak, Malomed and Quiroga-Teixeiro [1994], in which
an intermediate fiber segment, with a value D̃ of its dispersion coefficient taking
some specially chosen value between the initial and final values D1 and D2, is
inserted between the incoming and outgoing fibers.
In terms of the standard VA, the incoming soliton corresponds to a particle

resting at the bottom of the potential well (see fig. 1) corresponding to D = D1.
In passing to the second fiber, and then to the third, the soliton jumps from one
potential well into another, corresponding to a different value of D (it is assumed
that the nonlinear coefficient is the same in all the fibers involved). The energy E,
width a, and chirp b of the pulse must be continuous across the jump. According
to eq. (31), the continuity of b implies that the combination D−1da/dz must keep
its value, as does a, across the jump, while the derivative da/dz itself changes
its value by a jump.
Within the framework of this description, an ideal transformation of an incom-

ing fundamental soliton, which was adjusted to the dispersion coefficient D = D1,
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U(a)

a

a1

a2

a~

Fig. 5. Potential wells corresponding to three different values of the dispersion coefficient (here
denoted a) for a fixed value of the soliton energy. The dashed trajectory demonstrates the possibility
for ideal compression of the input soliton into an output soliton, keeping its fundamental character.

into an outcoming fundamental soliton, adjusted to D = D2, is achieved if the
value D̃ of the dispersion in the intermediate fiber and its length L∗ are selected
in such a way that after the jump from the first potential well into the second
the soliton performs exactly half a cycle of oscillations in the second well, hits
its wall, and at this point jumps into the third potential well corresponding to
D = D2, as illustrated by fig. 5. An elementary calculation at constant energy
yields

D̃ =
2D1D2
D1 + D2

, L∗ =
p2 (D1 + D2)

2

8
√
D1D2 E2

(57)

(here, the nonlinear coefficient is g ≡ 1). In this approximation, the same result
is expected if the soliton passing the intermediate segment performs any odd
number of half-cycles of the oscillations.
This prediction was checked against direct simulations. To estimate the

efficiency of the scheme, the soliton was passed through the intermediate
segment with the value D̃ taken as per eq. (57) with different values of its length.
The soliton component in the energy of the output pulse was determined as
corresponding to the discrete eigenvalue obtained from the numerical solution
of the ZS equations for this pulse. Figure 6 shows the most essential numerical
result, viz., the share of the input soliton’s energy which is kept by the output
soliton at different values of the dispersion ratio D1/D2, vs. the length of
the intermediate segment measured in units of the length L∗ predicted by
eq. (57). The last curve, corresponding to D1/D2 = 10, includes two optimum-
compression points corresponding to both one and three half-cycles of the
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Fig. 6. Results of direct simulations for the energy of the compressed soliton, Es, normalized to
the energy E0 of the input soliton, vs. the length of the intermediate segment L normalized to the
optimum-compression length L∗ predicted by VA (eq. 57). The four curves displayed pertain to

dispersion ratios D1/D2 = 2, 3, 5, 10.

oscillations. It is noteworthy that, although degradation of compression quality
does occur in direct simulations with increasing dispersion ratio, the degradation
is not catastrophic: even at a very large value of the dispersion contrast,
D1/D2 = 10, as much as 84% of the input energy is kept in the soliton component
of the output pulse (and the best result is achieved at the second optimum-
compression point). It is interesting too that the actual value of the (first)
optimum-compression length decreases with increasing of the dispersion ratio.
In the same work by Anderson, Lisak, Malomed and Quiroga-Teixeiro [1994],

a related problem was analyzed by means of VA, viz., “tunneling” of a soliton
through a finite segment of a purely linear fiber inserted between two nonlinear
ones. Predictions produced by VA for this problem (e.g., the critical length of
the linear segment behind which the soliton gets completely destroyed) were
compared to direct simulations, resulting in good agreement.
The three-fiber compression scheme was tested in a real experiment by

Bertilsson, Aakjer, Quiroga-Teixeiro, Andrekson and Hedekvist [1995]. For
instance, an input fundamental soliton with width 11 ps was successfully
compressed to a fundamental soliton with width 2.4 ps, when the soliton was
passed from a fiber with D1 = 5 ps/(km· nm) to one with D2 = 1 ps/(km· nm)
through a 20 km-long intermediate segment with dispersion D = 1.7 ps/(km· nm),
which is quite close to that predicted for this case by eq. (57). The compression
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factor achieved, W1/W2 ≈ 4.6, is quite close to the ideal one, D1/D2 = 5,
predicted by eq. (56).

2.1.6. Resonant excitation of soliton internal vibrations by periodic
amplification

A realistic model of a fiber communication link should take into account losses,
periodic amplification, and filtering, which makes it necessary to consider a
perturbed NLS equation,

iuz + 1
2utt + |u|2u = ia(z) u + ibutt , (58)

where we set D = g ≡ 1, the term ~ b accounts for the filtering (which is taken
in the distributed approximation, averaging the discretely placed filters along the
fiber link), and the function a(z) combines the uniformly distributed losses and
periodic amplification as per eq. (21). Stationarity of the soliton transmission
regime requires the mean net rate of attenuation and amplification for the soliton,
averaged over long distance, to be zero. Neglecting filtering losses, as well as
emission of radiation by the soliton, this condition amounts to setting gza = a0
in eq. (21). When the additional losses are taken into account, they must be
compensated by a(z) having a residual positive mean value a. Therefore, in the
general case it is natural to split the function a(z) into a mean value and a variable
part a(z) with zero average value,

a(z) ≡ a + a1(z). (59)

The dissipative term ~ a in eq. (58) can be converted into a variable coefficient
in front of the nonlinear term by means of the transformation (22). In the present
case, it is reasonable to apply this transformation only to the variable part of a(z),
leaving the mean value a aside, which leads to the equation

ivz + 1
2vtt + e

2L(z)|v|2v = i (av + bvtt ) , (60)

where L ≡ ∫ a1(z) dz.
Periodic perturbation of a soliton obeying eq. (60), a physical origin of

which is the periodic amplification of the soliton in a long fiber link, may
get into a resonance with the free internal vibrations of a deformed soliton
described above. This problem was considered, by means of VA, in a paper by

Final proof, Progress in Optics 43, p. 100



2, § 2] Dynamics of solitons in a single-mode nonlinear optical fiber or waveguide 101

Malomed [1996]. The exact resonance takes place if the period of the small
vibrations of a perturbed soliton, which is

z0 ≡ 2p
K0

=
p2

E2
, (61)

with K0 given by eq. (36) (recall that now D = g = 1), is equal to the
amplification spacing z0, see eq. (21). Proximity to the resonance is determined
by a detuning parameter,

û ≡ p2(
E2za

) − 1. (62)

The result takes the form of the variational equations derived above, in which
the energy is replaced by E(z) ≡ E exp(2L(z)), and, additionally, the filtering
term gives rise to an effective friction force that should be added to eq. (32), so
that it becomes

d2a
dz2

=
4
p2

[
1
a3
−
E e2L(z)

a2

]
−
16
(
6 + p2

)
3p3

E2b
da
dz

(63)

(strictly speaking, the friction force takes this simple form only for small-
amplitude oscillations near the bottom of the potential well, see fig. 1). Besides,
the relation between the chirp b and the varying width a changes against
eq. (31):

b =
1
2a
da
dz
−
4a1(z)
p2a2

[recall that a1(z) is the variable part of a defined in eq. (59)].
In eq. (63), z-periodic functions can be decomposed into Fourier series, and

nonlinearities are to be expanded, assuming oscillations with a small amplitude
near the bottom of the potential well. Keeping quadratic and cubic nonlinear
terms in the latter expansion, it was demonstrated that the final equation can be
mapped into the standard equation for a resonantly driven nonlinear oscillator,
provided that the detuning (62) is small enough. Using well-known results for
the latter equation (Landau and Lifshitz [1975]), the amplitude of established
oscillations can be found, and their stability can be examined. In particular,
a bistability region was found in the parametric space, where two different
solutions for the driven internal vibrations of the soliton may exist, being
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simultaneously stable. The expression for the bistability region takes a simple
form when the filtering is disregarded, b = 0:

û < −
(
9g
p2

)2/3
(64)

[recall that g is the gain parameter from eq. (21), and û is the detuning (62)].
The difference between two coexisting stable propagation modes of the soliton
in the bistable range is in the size of the chirp: one mode is characterized by
low chirp, while the other has relatively large chirp.
Moreover, it was shown that a subharmonic resonance, which takes place when

the period (61) of small vibrations of the perturbed soliton is close to 2za, also
gives rise to a bistability. Thus, the soliton may propagate along the fiber link
in the state of persistent internal vibrations, which are resonantly driven by the
periodic amplification.

2.2. A spatial soliton in a periodically inhomogeneous planar waveguide

2.2.1. A stationary soliton

A peculiarity of physically relevant problems for spatial solitons is that they may
interact with an effective external potential, as per eq. (5). For the simplest case,
with a potential of parabolic shape, VA was applied to the corresponding spatial
soliton by Michinel [1995], who used a Gaussian ansatz including a degree of
freedom accounting for a possible shift of the soliton off the waveguide’s center.
In particular, it was demonstrated that this ansatz generated decoupled evolution
equations for the internal vibrations of the soliton, and for oscillations of its
center about the center of the waveguide.
A model with great potential for applications to photonics introduces a

periodically inhomogeneous nonlinear waveguide that may be a basis for a
switchable multichannel system guiding light signals. The basic version of this
model postulates a simple sinusoidal spatial modulation of the waveguide, so
that eq. (5) takes the form

iuz + 1
2uxx + û cos(qx) · u + |u|2u = 0, (65)

where L ≡ 2p /q and û are the period and amplitude of the modulation; using
the invariance of eq. (65), it is possible to set L = 1, i.e., q = 2p , which will
be assumed below. As a matter of fact, the same equation (65) also describes
a planar array of densely packed nonlinear waveguides, a medium in which
actual experiments with the spatial solitons have been performed (Eisenberg,
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Silberberg, Morandotti, Boyd and Aitchison [1998]). Indeed, a chain of coupled-
mode equations for the array reduces, in the dense-packing approximation, to the
NLS equation in which the residual discreteness manifests itself in the form of
an effective harmonic Peierls–Nabarro potential (Kivshar and Campbell [1993]),
i.e., exactly eq. (65).
This model was analyzed in detail by means of a combined analytical (VA-

based) and direct numerical methods by Malomed, Wang, Chu and Peng [1999].
The first objective of the analysis was to find stationary one-soliton solutions of
the form

u(x, z) = exp(ikz)U (x) (66)

with a real propagation constant k and real U (x). The solution describes a solitary
beam trapped in a trough (one of the channels induced by the periodic spatial
modulation).
Substitution of eq. (66) into eq. (65) leads to an ODE,

1
2U

′′ + [û cos(2px) − k]U +U 3 = 0, (67)

which can be derived from the Lagrangian

L =
∫ +∞

−∞

[
(U ′)2 + (2k − û cos(2px))U 2 − U 4

]
dx. (68)

The solution is approximated by a simple ansatz, U = A sech(h x). Placing the
center of the soliton at x = 0, one assumes û > 0 in eq. (65), then x = 0 is a local
potential minimum for the soliton. Substituting the ansatz into the Lagrangian
and performing the integration, the variation in A and h leads to

h2 − 2p2û

[
2p2 cosh(p2/h) − 3h sinh(p2/h)

]
h2 sinh2(p2/h)

= 2k , (69)

A2 =
1
4

[
h2 + 6k −

6p2û
h sinh(p2/h)

]
. (70)

Equations (69) and (70) have exactly one solution at any û > 0 and any k > 0.
In particular, the asymptotic form of the solution for very small and very large k
is A2 = h2 = 2k .
Comparison of the VA prediction for the soliton shape with numerical

solutions of eq. (67) is presented in fig. 7. Note that, at small k , the width of the
soliton is essentially larger than the modulation period. This explains the wavy
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Fig. 7. Comparison between the one-soliton solutions to eq. (67) at e = 1 with (a) k = 0.2 and
(b) k = 5.0, obtained numerically (solid curves) and by means of VA (dashed curves).

shape of the soliton in fig. 7a with k = 0.2. Of course, this feature is not included
in the simple ansatz adopted above, which explains some disagreement between
VA and the numerical results at small k: at k = 0.2, the amplitude predicted by
eq. (70) differs by less than 2% from the numerical value U (x = 0) = 0.622.
At larger k , the soliton becomes narrower, and it is then very close to the shape
predicted by VA, see fig. 7b.

2.2.2. Soliton stability and the Vakhitov–Kolokolov criterion
Numerical simulations of the full PDE (65), using an ansatz with the width
and amplitude (69) and (70) predicted by VA as an initial configuration, have
demonstrated that, at all values of û and k , the initial configuration gives rise to
stable solitons. Actually, VA makes it possible to predict the stability by means
of a criterion proposed by Vakhitov and Kolokolov [1973] (the VK criterion).
According to this criterion, one should calculate the power of the solitary beam,
F =

∫ +∞
−∞ |u|2 dx, which is thus obtained as a function of û and k . The VK cri-
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Fig. 8. Solitary-beam power F vs. propagation constant k for the one-soliton state in model (65):
shape found numerically (solid curve) and shape predicted by VA (dashed curve).

terion states that a necessary (but, generally, not sufficient) condition for the
stability of the soliton is ðF/ðk > 0. A typical example of the dependence F(k)
evaluated on the basis of both numerical and variational solutions is displayed
in fig. 8, which clearly shows that the numerical and variational results are fairly
close, both showing that the slope ðF/ðk is positive everywhere.
An issue crucially important for the use of this model as a multichannel system

is the existence and stability of two-soliton states, with the solitary beams trapped
in two adjacent channels. The two-soliton state can be destabilized by the mutual
attraction of the two beams, which can lead to their merging into one beam.
Malomed, Wang, Chu and Peng [1999] had found a stability region for two-
soliton states by means of direct simulations.

2.2.3. Switching a soliton between adjacent channels

A more sophisticated problem that was also considered by Malomed, Wang,
Chu and Peng [1999] is to model controllable switching of the soliton from a
given trough into an empty adjacent one (the principal possibility of switching
spatial solitons was demonstrated experimentally by Shalaby and Barthelemy
[1991]). To this end, one may assume that a laser beam launched in the direction
transverse to the planar waveguide is focused on a small spot with coordinates
(x = x0, z = 0) somewhere between the two troughs [0 < x0 < 1; recall q ≡ 2p
in eq. (65)]. Through cross-phase modulation (XPM), the bright spot gives rise
to an attraction center, which is described by an additional localized perturbation
added to eq. (65):

iuz + 1
2uxx + û cos(2px) · u + |u|2u = −m d(x − x0) d(z) · u, (71)
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m being proportional to the intensity of the transverse beam. The attracting spot
has a chance to throw the soliton over the dividing potential barrier into the
adjacent trough.
To analyze this possibility, the change of the soliton induced by the

perturbation concentrated at the spot can be found in an exact form. Indeed,
representing the soliton solution as u(x, z) = a(z, x) exp(i÷(x, z)) with real
amplitude a and phase ÷, it is straightforward to see that the spot does not
introduce any instantaneous change of the amplitude, while the change of the
phase is

D÷(x, z) ≡ ÷(x, z=+0) − ÷(x, z=−0) = m d(x − x0). (72)

Further analysis can be carried out by means of perturbation theory, treating
both û and m as small parameters, and the soliton as a particle. The unperturbed
NLS soliton should be taken in the general “walking” form (7), which, in the

present case, corresponds to a(x, z) =
√
2k sech

(√
2k(x − cz − x)

)
, where k is

the propagation constant introduced in eq. (66), the small “velocity” c is, in
fact, a ramp of the solitary beam in the (x, z) plane, and x is the coordinate of
the beam center at z = 0. With regard to the definition (11) of the momentum
of the “walking” soliton, it may be interpreted as a particle with the following
momentum, kinetic energy, and mass:

P = Mc, Ekin =
P2

2M
, M = 2

√
2k. (73)

We consider the situation in which the beam at z < 0 was trapped in the
given channel (trough), so that it has c = x = 0. As follows from the general
expression (11) for the momentum, the instantaneous phase change (72) gives
rise to a jump of the momentum from 0 to a value that can be found in exact
form:

P =
∫ +∞

−∞
a2(x)D÷′(x) dx = m

∫ +∞

−∞
a2(x) d′(x − x0) dx ≡ −2ma(x0) a′(x0).

(74)

The substitution of the unperturbed soliton form,
√
2k sech

(√
2kx
)
, into eq. (74)

yields an explicit result for P. Thus, the localized perturbation plays the role of
a sudden push that lends the particle a kinetic energy, which can be found at the
first order of perturbation theory, using eqs. (73) and (74),

Ekin = m2(2k)5/2 sinh
2
(√
2k x0

)
sech6

(√
2k x0

)
. (75)
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The interaction of the unperturbed soliton with the periodically modulated
refractive index is described by an effective periodic potential W (x), which is
generated by the corresponding part of the Lagrangian (68),

W (x) ≡ −û
∫ +∞

−∞
cos(2px) · a2(x) dx = − p2û

sinh
(
p /

√
2k
) cos(2px). (76)

According to eq. (76), the height of the potential barrier separating two adjacent
troughs is

DW =
2p2û

sinh
(
p /

√
2k
) . (77)

The soliton set in “motion” (physically, given the ramp c) by the sudden push
will pass the separating barrier and get into the adjacent trough if Ekin > DW .
Substitution of equations (75) and (77) into this inequality shows that the
attracting spot created at the point x0 is able to switch the solitary beam into
the adjacent channel if its strength m2 exceeds a threshold value

m2thr =
2p2û
(2k)5/2

·
cosh6

(√
2kx0

)
sinh
(
p /

√
2k
)
sinh2

(√
2kx0

) . (78)

In particular, m2thr, considered as a function of x0, takes a minimum value at the

point where cosh2
(√
2kx0

)
= 3
2 .

In the framework of the lowest approximation of the perturbation theory, the
soliton kicked out from the trough where it was originally trapped will not be
trapped by the adjacent trough, but will keep moving farther. However, radiative
losses not taken into account in the lowest approximation are likely to help
trapping the soliton. Direct simulations demonstrate that radiative losses take
place indeed, and the soliton can be trapped by the adjacent trough after having
been pushed by the spot (Malomed, Wang, Chu and Peng [1999]).

2.3. Interactions and bound states of solitons

2.3.1. Potential of interaction between two far-separated solitons
2.3.1.1. General analysis. The variational methods can also be quite efficiently
used for the description of multi-soliton complexes, the simplest and most
important example of which is a pair of far-separated solitons. In the case of
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the unperturbed NLS equation, the interaction force between two distant solitons
was calculated analytically by Karpman and Solov’ev [1981] on the basis of the
perturbation theory for a single soliton, which treated the overlapping between
one soliton and a vanishing tail of the other as a small perturbation (similar
work was done by Gordon [1983]). Essentially the same results were obtained
by Anderson and Lisak [1986a] by means of VA, postulating an ansatz in the
form of a linear superposition of two solitons.
The interaction force between solitons, predicted by Karpman and Solov’ev

[1981], was directly measured by Mitschke and Mollenauer [1987] in an
experiment with solitons in an optical fiber. Interactions between spatial solitons
are also amenable to direct experimental studies, as first demonstrated by
Reynaud and Barthelemy [1990] and Aitchison, Weiner, Silberberg, Leaird,
Oliver, Jackel and Smith [1991].
Following these ideas, it is natural to consider two far-separated solitons as

particles, describing their interaction in terms of the corresponding effective
potential. It will be shown below, following Malomed [1998a], that VA makes
it possible to find the effective interaction potential in a very general and fairly
simple analytical form.
For two far-separated solitons, the wave field is assumed to be a superposition

of their individual fields u1 and u2,

u(z, t) = u1(z, t) + u2(z, t). (79)

Note, however, that a weak “tail” of one soliton can be essentially distorted where
it overlaps with the “body” of the other soliton. The general analysis outlined
below does not neglect this distortion. The configuration with two solitons to be
considered here is defined so that the center of the first soliton is set at t = 0,
and that of the second is at t = −T , where T is a large separation between the
solitons.
The interaction potential is, with the minus sign, part of the Lagrangian

produced by the overlapping of each soliton with the small tail belonging to
the other. Substituting the superposition (79) into the Lagrangian, one arrives in
the first approximation at the following general expression for the potential:

Uint =

{
−
∫ ([(

dL
du∗

)∣∣∣∣
u = u1

−
ð

ðz

(
ðL
ðu∗
z

)∣∣∣∣
u = u1

]
· u∗
2 +

(
ðL
ðu∗
t

)∣∣∣∣
u = u1

· (u∗
2 )t

)
dt

+ c.c.

}
+ {1� 2},

(80)
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where c.c. stands for the complex conjugate expression, the integral is taken
over a vicinity of the first soliton where the tail of the other one is small, and
{1 � 2} stands for a symmetric contribution from a vicinity of the second
soliton. The presence of ð/ðz in one of the terms of the integrand implies that the
z-derivative was transferred, in that term, from the multiplier u∗

2 as per integration
by parts with respect to z, which is implied because the Lagrangian L =

∫ +∞
−∞ L dt

should be further inserted into the action,
∫ +∞
−∞ Ldz.

If integration by parts (with respect to t) is applied to the last term in the
integrand in eq. (80), one arrives at the following integral expression:∫ [(

dL
du∗

)
−
ð

ðz

(
ðL
ðu∗
z

)
−
ð

ðt

(
ðL
ðu∗
t

)]
u = u1

· u∗
2 dt , (81)

which is exactly equal to zero, as the one-soliton solution (for the first soliton) is
obtained from the Lagrangian exactly in the form stating that the expression in
the square brackets in eq. (81) is zero. Therefore, the only nonzero contribution
to the interaction potential in its general form (80) comes from the integration
limits when integrating by parts the last term in the integrand in eq. (80):

Uint = 1
2D(z)

[
(u1)t u

∗
2 + c.c.

]∣∣t = +∞
t = −t0

+ {1� 2}. (82)

As the integral in eq. (80) is to be taken over a vicinity of the first soliton, the
lower integration limit t0 is realized here as some value of t such that

h−1 � t0 � T , (83)

where h−1 is the width of the soliton (see below), and T is the large separation
between the solitons defined above. The condition h−1 � t0 is very helpful,
as it makes it possible to approximate, in the expression (82), the wave forms
of both solitons by asymptotic expressions for their tails, which can be readily
obtained from the linearized version of the underlying NLS equation, as will be
shown below. It is also evident that this approach avoids the above-mentioned
complication, viz., distortion of the soliton’s tail in the region when it overlaps
with the body of the other soliton. An important result is that, as will be seen
below, the final expression for the interaction potential does not depend on the
arbitrary value of the intermediate temporal coordinate t0.

2.3.1.2. Calculation of the soliton’s “tails”. In a realistic case, the correspond-
ing NLS equation describing a long fiber-optic communication link must include
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the gain/loss term as in eq. (20), and also a filtering term, so that the linearized
form of the perturbed NLS equation becomes (cf. eq. 97 considered below)

iuz + 1
2D(z) utt = ia(z) u + ib(z) utt . (84)

Here, b is the filtering coefficient, and the most general case is considered,
in which D, a and b may all be periodically modulated, in order to take into
account, respectively, possible dispersion management, periodic alternation of
the losses and gain, and discrete allocation of filters in a real lumped model (as
opposite to the simplified distributed model, which assumes the filtering to be
uniformly “smeared” along the fiber link). Accordingly, these coefficients may
assume the forms

D(z) = D +
dD(z)
dz

, a(z) = a +
dA(z)
dz

, b(z) = b +
dB(z)
dz

, (85)

where overbars indicates average values, and the terms represented by the
derivatives account for the purely variable parts with zero mean values (in
particular, D(z) is called accumulated dispersion, which is defined so that it does
not include a contribution from the average part of the dispersion coefficient).
A solution to the linearized equation (84) for an exponentially decaying tail

may be sought for as

utail(z, t) = A exp
[
−÷(z) + iy(z) − (h + ic ) |t |] , (86)

where A, h and c are real constants. In fact, A and h, the latter constant
determining a characteristic soliton’s width ~ h−1, may only be found by matching
the tail (86) to the soliton solution of the full (nonlinear) perturbed NLS equation,
so in the solution (86) they figure as arbitrary real constants, while c must be
found along with ÷(z) and y(z). The final form of the solution is simplified due
to the fact that the dissipative terms on the rhs of eq. (84) may be treated as
small perturbations.
The solution must satisfy the condition that the function ÷(z) in (86) may

oscillate in z, but may neither decay nor grow systematically, as the interaction
between established (quasi-stationary) solitons is considered. This condition
yields, at first order of perturbation theory,

c =
a + bh2

Dh
, (87)

and then one finds

÷(z) = hcD(z) −
[
A(z) + h2B(z)

]
, y(z) = 1

2h
2 [Dz + D(z)] +y0, (88)

where D(z), A(z) and B(z) are the oscillating functions defined in eq. (85), and y0
is an arbitrary real constant.
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2.3.1.3. Interaction potential for two solitons in an optical communication link.
The solution (86) for the tails of both solitons u1 and u2 can be inserted into the
general expression (82) for the interaction potential (80). Because the condition
for equilibrium between gain and losses selects the same parameters A and h
for all solitons in the system, it is sufficient to consider the case of interaction
between identical solitons. One can then immediately check that the contribution
from the outer integration limit with respect to both solitons, i.e. at t = +∞,
vanishes, while the contribution from the intermediate limit t = −t0 has mutually
cancelling exponential factors exp(±ht0) produced by the expressions (86) for
the tails of u1 and u2, so that the effective potential does not depend on the
arbitrary value of t0:

Uint(T ,Dy) = −2A2hD(z) exp(−2÷(z) − hT ) cos(cT ) cos(Dy), (89)

where Dy ≡ y (1)0 − y (2)0 is the phase difference between the two solitons.
A remarkable feature of this expression is that the potential does not decay
monotonically with the separation T between the solitons, but shows oscillations
accounted for by the multiplier cos(cT ), as seen in fig. 9. As first shown by
Malomed [1991b], this opens the way to the existence of stationary bound states
of the two solitons at values of T corresponding to extrema of the potential (89),

Fig. 9. Schematic form of the potential of the interaction (89) between two solitons for D÷ = p . The
point T = T1 corresponds to the first bound state generated by the potential, see eq. (90).
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i.e., cot( cT ) = −c /h. The first bound state corresponds to the smallest possible
separation between the solitons, which is

T1 =
1
c

[
p
2
+ tan−1

(
c
h

)]
≈ p
2c

(90)

(see fig. 9), where it is taken into account that |c /h| � 1 as per eq. (87).
However, the stability of those bound states is a tricky problem, which will be
considered in the next subsection.
It should be noted that the general expression (82) for the interaction potential

was obtained for a model that has the Lagrangian representation (81). In fact,
the analysis outlined above remains completely correct in the presence of loss
and gain, as they can be easily included in the Lagrangian by means of the
transformation based on eqs. (22) and (24). Contrary to this, the use of the
potential is not quite consistent in the presence of filtering, for which a simple
Lagrangian representation is not available. Nevertheless, the concept of the
effective potential may be employed in the case when filtering acts as a small
perturbation. Note also that the oscillations in the shape of the potential (89),
which represent its most nontrivial feature, demand the presence of loss and
gain, as is obvious from eqs. (90) and (87), but not necessarily the presence of
filtering.
The general approach to the calculation of an effective interaction potential

between two far-separated solitons outlined above was generalized by Malomed
[1998c] for two- and three-dimensional solitons. As well as in the 1D case, the
integral contribution to the potential can be eliminated by means of integration
by parts, which, in the multidimensional situation, takes the form of the Gauss
theorem, that reduces the potential to a contribution from the corresponding
surface term, taken along circumferences (in the 2D case) or spheres (in the
3D case) of a large radius ø surrounding each soliton. The radius ø is chosen
so that r0 � ø � R (cf. eq. 83), where r0 is the size of the solitons, and R is
the separation between them. Then, the surface term can be easily calculated in
a general explicit form, as both solitons are represented in it by their asymptotic
tails. The final expression for the interaction potential, which is (cf. eq. 89)
Uint ~ R−(D − 1)/2 exp(−R/r0) cos(Dy) (in the purely conservative model), where
D = 2 or 3 is the dimension, does not depend on the intermediate radius ø0,
similar to the fact that expression (89) does not contain the intermediate
time scale t0. A similar result was obtained by Malomed, Maimistov and
Desyatnikov [1999] for the interaction of multidimensional solitons belonging
to different components in a two-component model.
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2.3.1.4. Generalization for dissipative systems. The concept of the effective
interaction potential generated by the overlapping of the tail of each soliton with
the body of the other can also be applied to purely dissipative systems that admit
representation in the gradient (pseudo-Hamiltonian) form [cf. the Hamiltonian
representation (17)]:

ut = −
dL
du∗ , L =

∫ +∞

−∞
l(u, u∗, ux, u∗

x ) dx, (91)

where the variational derivative acts on the Lyapunov functional L with a real
density l. An obvious consequence of eq. (91) is dL /dt � 0, hence the
dynamical evolution described by eq. (91) drives the system to a state with a
minimum value of the Lyapunov functional.
A physically interesting example of the gradient system is a parametrically

driven Ginzburg–Landau (GL) equation, which was introduced by Coullet, Lega
and Pomeau [1991] [cf. the parametrically driven damped NLS equation (29)]:

ut = u − |u|2u + uxx + gu∗, (92)

that can be derived from the Lyapunov functional with the density

L =
∫ +∞

−∞

(
|ux|2 − |u|2 + 1

2 |u|4 − 1
2

[
u2 + (u∗)2

])
dx, (93)

g being a real parameter. Equation (92) has an exact solution in the form of a
Bloch domain wall (BDW), alias kink,

Re u = s
√
1 + g tanh

(√
2gx
)
, Im u = sm

√
1 − 3g sech

(√
2gx
)
,

(94)
where s = ±1 and m = ±1 are two independent polarities of the kink. BDW is
stable in its existence interval 0 < g < 1

3 , which gives rise to a natural problem
of the interaction between two BDWs with a large separation L between them.
The interaction is accounted for by a part in the Lyapunov functional (93)

that is generated by overlapping between the two kinks. This part of the
functional will be referred to as a pseudopotential of the interaction. Linearizing
the integrand in the integral expression for the pseudopotential with respect
to the fields representing weak tails of the kinks, and taking into account
the fact that an isolated BDW is an exact solution to eq. (92), which is
generated by the Lyapunov functional as per eq. (91), it was shown by Malomed
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and Nepomnyashchy [1994] that applying integration by parts reduces the
pseudopotential Uint to a general expression similar to eq. (82),

Uint =
[
(u∗
1 )x u2 + c.c.

]∣∣x = +∞
x = −x0

+ {1� 2}, (95)

where x0 is an intermediate point similar to t0 in eq. (82).
The substitution of straightforward asymptotic expressions for the tails of the

two BDWs (94) into the general expression (95) yields an effective interaction
pseudopotential that, as well as its counterpart (89) in the conservative model,
does not depend on the choice of the intermediate point:

Uint(L) = 16
√

2
3

[
(1 − 3g)l1l2 exp

(
−
√

2
3 L

)
− 14

3 exp

(
−2
√

2
3 L

)]
(96)

(recall that l1,2 are intrinsic polarities of the two kinks). In expression (96), it is
taken into account that s1s2 ≡ −1 for two adjacent kinks.
This result is most interesting in the case when (1 − 3g) is small: then

the pseudopotential (96) combines attraction at L < L0 ≈
√

3
2 |ln(1 − 3g)|

and repulsion at L > L0. Therefore, one may conclude that a periodic
array of BDWs in an infinite system, or in a long one subject to periodic
boundary conditions, is stable if the array spacing exceeds L0 (Malomed and
Nepomnyashchy [1994]).

2.3.2. Full analysis of bound states of solitons in a realistic model of an
optical communication link

For a full description of the interactions between solitons (in particular, for
the analysis of the stability of their bound states), it is necessary to consider
the interactions by means of direct perturbation theory, rather than limiting
the analysis to finding the effective interaction potential. The model takes into
account, as above, losses, gain, and filtering, but in the distributed approximation,
so that the accordingly perturbed NLS equation actually takes the form of
the complex Ginzburg–Landau (GL) equation with constant coefficients. In the
GL model, soliton-like pulses have, in accordance with eq. (86), tails which
decay exponentially with oscillations, in contrast to the monotonically decaying
tails of the NLS soliton (6).
In the simplest GL equation with a cubic nonlinearity, solitary pulses are

obviously unstable, as the zero solution, i.e., the soliton’s background, is unstable
in that equation due to the presence of the linear gain. Therefore, interactions
between solitons and their bound states can be studied in a consistent way, as was
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done by Afanasjev, Malomed and Chu [1997] in the framework of the cubic–
quintic (CQ) GL equation, which combines linear loss, cubic gain, and quintic
loss:

iuz + 1
2utt + |u|2 u = −iau + ibutt + iû |u|2 u − iG |u|4 u. (97)

Here, we set D = g = 1, and the positive parameters a, b , û and G account
for, respectively, linear losses, spectral filtering, nonlinear gain, and stabilizing
higher-order nonlinear losses (a model of this type was first introduced by
Petviashvili and Sergeev [1984]). The linear and quintic losses provide for the
linear stability of the zero solution and for the global stability of the model,
respectively. The nonlinear gain, accounted for by the term ~ û in eq. (97),
can be produced, in a fiber-optic communication link, by a combination of the
usual linear amplifiers with nonlinear saturable absorbers, see, e.g., the book by
Hasegawa and Kodama [1995]. As demonstrated first in an appendix to the paper
by Malomed [1987], in the case when the gain and dissipation terms in eq. (97)
are small perturbations, which is relevant for the application to optical fibers,
the CQ model gives rise to two different stationary soliton-like pulses which are
close to the NLS soliton:

u = h sech[h(t − T )] exp
[
i
(
1
2h
2z + ÷

)]
, (98)

h2 = (16G )−1
[
5(2û − b)±

√
25(2û − b)2 − 480aG

]
, (99)

where T and ÷ are arbitrary constants. The upper and lower signs in eq. (99)
correspond, respectively, to stable and unstable pulses. Besides selecting the
definite value of the soliton’s amplitude, which is arbitrary in the case of the
NLS soliton proper, the small dissipative perturbations in eq. (97) also cause the
asymptotic form of the soliton far from its center to be oscillating (cf. eq. 86),

u ≈ 2h exp (−h|t | + ic |t |) , (100)

where c = ah−1 + bh [cf. eq. (87); the small parameter c is absent in the zero-
order approximation (98)].
To consider the interaction between pulses with equal amplitudes h, it is

convenient to define the normalized propagation distance x ≡ 2
√
2h2z, the

separation between the pulses, r ≡ h(T1 − T2), and the phase difference between
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them, y ≡ y1 − y2. Considering overlapping between the solitons as another
small perturbation, one can derive a system of evolution equations for r and y:

d2r
dx2

+

√
2
3
b
dr
dx
+ e−r [cos(br) + b sin(br)] cosy = 0, (101)

d2y
dx2

+
l√
2

dy
dx
− e−r cos(br) siny = 0, (102)

where the four original control parameters combine into three final ones:

b , l ≡ 1
15

√
25(2û − b)2 − 480aG , b ≡ −a + bh2

h2
. (103)

Notice that cos(br) and sin(br) in eqs. (101) and (102) are induced by the
oscillations in the soliton’s tail as per eq. (100).
Equations (101) and (102) may be regarded as equations of motion for a

mechanical system with two degrees of freedom, r and y, in the presence of
friction, in the potential U (r,y) = −e−r cos(br) cosy, which has a set of local
extrema at

br0 = tan
−1 b + 1

2p (1 + 2n), y0 = pm (104)

(cf. eq. 90), where n = 0, 1, 2, . . ., and m = ±1,±2, . . .. Normally, points of
the potential minimum would be stable fixed points (FPs) of the underlying
dynamical system and, thus, they would produce stable bound states of the two
pulses. However, a peculiarity of the system (101) and (102) is that, while the
effective mass corresponding to the coordinate r is +1, the mass corresponding
to y is −1. The presence of the negative effective mass drastically changes the
stability of the FPs: all the local extrema (104) are saddles. It is easy to find a
pair of eigenvalues that determine the character of the saddle FP (so that small
perturbations around the static solution are growing as exp(sz)):

s1,2 = ±b
√
3
bl
e−r0 . (105)

Due to the assumed smallness of the parameters on the rhs of eq. (97), the
coordinate r0 of the FP given by eq. (104) is large, hence the eigenvalues (105)
are exponentially small. Notice that, in the framework of the fourth-order system
(101) and (102), the FP must have four eigenvalues. Two others that are missing
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in (105) are negative, and they are not exponentially small, i.e., they correspond
to quickly decaying (stable) small perturbations around the FP.
Besides the saddles (104), eqs. (101) and (102) also have another set of FP’s,

br0 = 1
2p (1 + 2n), y0 = 1

2p (1 + 2m). (106)

Comparing FP’s (104) and (106), one concludes that, for the same value of n,
they have nearly equal separation r between the bound pulses, but the relative
phase y differs by 1

2p . Stability analysis of the FP’s (106) reveals that they
have two relatively large negative eigenvalues corresponding to rapidly decaying
perturbations [as well as in the case of FP (104)], and two exponentially small
complex eigenvalues

s1,2 = ±ib
√
3
bl
e−r0 +

3
2

(
b

bl

)2(√
2 b +

3√
2
l
)
e−2r0 ; (107)

hence, the FPs (106) are unstable spirals.
Thus, we obtain two types of unstable bound states in the CQ GL model:

depending on the phase difference between the pulses, their bound state are
unstable as the saddle or as the spiral. Exactly this was observed in numerical
experiments performed at non-small values of the perturbation parameters (and
with normal dispersion, i.e., with the opposite sign in front of the dispersion
term) by Afanasjev and Akhmediev [1996]. Therefore, one may conjecture
that the above analytical results should plausibly remain valid even when the
perturbation theory cannot be applied.
Returning to perturbative analysis, one can notice a very important difference

of eq. (107) from eq. (105). Namely, for the same n, i.e., nearly the same r0, the
real part of the eigenvalue (107), accounting for the instability of the spiral, is
proportional to the square of the exponentially small factor exp(−r0), while in
the case of the saddle the growth rate of the instability is linear in this factor.
Thus, the instability of the spiral is extremely weak. Nevertheless, it is an

issue of fundamental interest to explore the result of a developing instability at
extremely large propagation distances. To this end, it is necessary to take into
account that the fourth-order system (101) and (102) implies relatively quick
decay of the perturbations corresponding to the above-mentioned relatively large
(non-exponential) stable eigenvalues, and very slow evolution of perturbations
corresponding to the exponentially small eigenvalues (105) and (107). In this
connection, a natural simplification of the full system is to project it onto the
two-dimensional space of the slow modes, eliminating two rapidly decaying ones.
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Technically, this implies treating the second derivatives in eqs. (101) and (102)
as small perturbations. In the zeroth approximation, one simply omits the second
derivatives, so that eqs. (101) and (102) reduce to

dr
dx

= −
3√
2 b
e−r [cos(br) + b sin(br)] cosy, (108)

dy
dx

=

√
2
l
e−r cos(br) siny. (109)

Within the framework of this system, FP (104) remains the saddle, while (106) is
neutrally stable.
At the next step, one restores the second-derivative term by means of the

identity d2y
dx2 ≡ d

dx

(
dy
dx

)
, and similarly for r, making use of the expressions (109)

and (108) for dy/dx and dr/dx. To perform the second differentiation, one can
use eqs. (108) and (109) once again. Retaining essential corrections to eqs. (108)
and (109) produced by this procedure, one arrives at the system

dr
dx
= −

3√
2b
e−r [cos(br) + b sin(br)]

[
cosy +

3
bl
e−r cos(br) sin2 y

]
= 0, (110)

dy
dx

=

√
2
l
e−r cos(br) siny

−
3√
2l2b

b e−2r [cos(br) + b sin(br)] sin(br) sin(2y).
(111)

It is straightforward to verify that the reduced system (110) and (111) has
exactly the same FPs (104) and (106) as the full system (101) and (102), with
the eigenvalues given by the same expressions (105) and (107). However, unlike
the complicated full system, it is very easy to understand the general character of
the dynamical trajectories on the phase plane of the reduced system. Indeed, one
can check that the saddles (104) are connected by a rectangular grid of dynamical
trajectories of the form r ≡ r0, y = y(x), and r = r(x), y ≡ y0, where r0 and y0
are the values of r and y at FPs (104). These trajectories are stable and unstable
separatrices of the saddles, and they are exact solutions to both eqs. (101, 102)
and (110, 111). From this fact, and from the knowledge of the eigenvalues
of the FPs, there follows a phase portrait of the reduced system shown in
fig. 10. Looking at the figure, one concludes that the spirals, except for those
corresponding to n = 0 in eq. (106), asymptotically approach, at x → ∞, infinite-
period limit cycles coinciding with an elementary cell of the separatrix grid. The
spirals corresponding to n = 0, i.e., to the bound states with the smallest possible
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Fig. 10. Phase portrait of the reduced dynamical system (108) and (109), showing the long-distance
evolution of the bound state of two solitons in the cubic–quintic Ginzburg–Landau model.

separation between the pulses, formally also asymptotically tend to a similar
cycle, that, however, passes through r = 0, which implies a collision between the
two pulses. The latter event is not described by the above approximation. It is
natural to expect that the colliding pulses will undergo fusion into a single pulse.
These conclusions have been checked by direct simulations of the full four-

dimensional system (101) and (102), with the conclusion that the full system
always produces results virtually identical to those obtained from the reduced
system, even if the perturbation parameters are not really small (Afanasjev,
Malomed and Chu [1997]). Thus, a general conclusion is that the spiral-type
bound states of the pulses in the CQ GL model are either practically stable in
the usual sense, if one may neglect the exponentially weak instability, or stable
as dynamical states corresponding to the limit cycle.

2.4. Dark and “symbiotic” solitons

This review focuses on “bright” solitons, which are represented by solutions
vanishing at infinity. It is, nevertheless, necessary to mention another class of
solutions, in the form of dark solitons (DSs), which look like a hole in a uniform
continuous-wave (CW) background. As is well known, the DS solution exists and
is stable in the usual NLS equation (2) in the case of normal dispersion (D < 0):

udark = a exp(iûa2 + i÷0) tanh
(√

û
|D| a(t − t0)

)
, (112)
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where a is the amplitude of the background supporting DS, and ÷0 and t0 are
arbitrary phase and position constants. DSs were first observed in a nonlinear
optical fiber by Krökel, Halas, Giuliani and Grischkowsky [1988].
The description of the dynamics of perturbed DSs is essentially complicated

by the presence of the fixed-amplitude background. In any perturbation-theory
approach, separation of the internal DS degrees of freedom and the background
is a crucial issue (Kivshar and Yang [1994], Kivshar and Królikowski [1995]; see
also a review by Kivshar and Luther-Davies [1998]). Moreover, a perturbed dark
soliton can easily generate waves propagating on top of the background. Due to
strong radiative losses generated by these waves, the dark soliton actually has
no effective “quasimode” of its internal vibrations, contrary to the Anderson
quasimode of the bright soliton described above. An appropriately modified
version of VA for DS was developed by Kivshar and Królikowski [1995];
it also includes the possibility of having nonlinearities in the corresponding
NLS equation different from the cubic nonlinearity in eq. (2), and other
perturbation terms. The technique was applied to various problems, notably the
interaction (in fact, repulsion) between two DSs.
VA for moving DSs was developed, with an emphasis on the stability problem,

by Barashenkov and Panova [1993]. A necessary stability criterion for moving
DSs, obtained in that work in a fairly simple form, states that the properly defined
momentum of the DS must be a decreasing function of its velocity; this was later
rigorously proved by Barashenkov [1996] by means of a Lyapunov functional
(i.e., an integral functional with the property that it may only decrease as a result
of the evolution of the fields) which can be introduced in this problem.
Another known model that gives rise to DS is a system of NLS equations

coupled by the nonlinear cross-phase-modulation terms, that will be considered
(for bright solitons) in detail below in § 4. If the two equations correspond to
two carrier waves with different wavelengths copropagating in a fiber, it is quite
possible to encounter a case where one carrier wave (typically, that with the
larger wavelength) has anomalous dispersion, while the other wave has normal
dispersion. Then, it is interesting to consider a bound state consisting of a bright
soliton in one subsystem and a DS in the other. Detailed analysis shows that
the only possible bound state of this type has the bright-soliton component
in the normal-dispersion wave, and the DS component in the anomalous-
dispersion wave (Trillo, Wabnitz, Wright and Stegeman [1988], Afanasjev,
Dianov and Serkin [1989], Wang and Yang [1990]). Because such soliton
components, obviously, cannot exist in isolation, the bound state was given the
name “symbiotic soliton” by Lisak, Höök and Anderson [1990], who studied it
in detail by means of an accordingly modified version of VA. Note, however,
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that symbiotic solitons are always unstable, as the CW background, which is
necessary to support its DS component in the anomalous-dispersion subsystem,
cannot be stable.

§ 3. Variational approximation for the inverse scattering transform

As mentioned in the introduction, the NLS equation, which is the most important
model for nonlinear optical fibers and waveguides, is amenable to an exact
solution by means of IST. In the context of this method, the first step is to
find scattering data corresponding to a given initial pulse u(t), solving the ZS
(Zakharov and Shabat [1971]) linear equations for the two-component complex
Jost function

(
y (1)(x), y (2)(x)

)
,

iy (1)t + ly (1) + u∗(t)y (2) = 0, (113)

iy (2)t − ly (2) + u(t)y (1) = 0, (114)

where the asterisk indicates complex conjugation, and l is the spectral parameter
which takes values in the upper complex half-plane. The most important
characteristic of the pulse, viz., its soliton content, is determined by discrete
eigenvalues ln, each giving rise to a soliton (7) with amplitude h = 2 Im(ln) and
velocity shift c = 4Re(ln), provided that D = g ≡ 1 in eq. (2).
Note that, as was discovered by Ablowitz, Kaup, Newell and Segur [1973,

1974] (see also books by Ablowitz and Segur [1981] and Newell [1985]), the
ZS equations are used in application of IST not only to the NLS equation, but
also to other integrable equations, including, in particular, those describing self-
induced transparency in an optical medium filled with two-level atoms (Ablowitz,
Kaup and Newell [1974], Kaup [1977]). Thus, it is quite important to develop
methods for solving ZS equations.
There are very few field configurations for which the ZS equations can

be solved exactly. These include a rectangular box without chirp (Manakov
[1973b]), and a pulse of the form u0(t) = A [sech(at)]

1 + im with real a and m
(Maimistov and Sklyarov [1987], Grünbaum [1989]). In other cases, numerical
methods had to be used (Boffeto and Osborne [1992]); in some cases, a WKB-
(Wentzel–Kramers–Brillouin)-like analytical approximation can be applied to the
ZS equations (Lewis [1985]). In particular, an important problem which requires
numerical calculation is the influence of chirp on the soliton content of pulses,
as the increase of the chirp gives rise to bifurcations, generating new solitons
and then pushing solitons apart by lending them opposite velocities (Hmurcik
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and Kaup [1979], Kaup and Scacca [1980]). The problem can be solved in the
simplest way for a rectangular box with the chirp accounted for by the phase
function ÷(t) = b|t |, with b = const., so that all of the initial chirp is concentrated
at the soliton’s center (Kaup, El-Reedy and Malomed [1994]).
On the other hand, the ZS equations have a natural variational representation,

which was used by Kaup and Malomed [1995] to develop VA for a semi-
analytical calculation of the discrete eigenvalues l, an account of which is
given below. Independently, essentially the same was done by Desaix, Anderson
and Lisak [1994] and by Desaix, Anderson, Lisak and Quiroga-Teixeiro [1996]
(in the latter work, rectangular-box, sech3, and Gaussian initial pulses were
considered).
Multiplying eq. (113) by y (2) and integrating the result over dt , one can obtain

the following representation for the spectral parameter:

l = −
L

N
, (115)

L ≡
∫ +∞

−∞

{
i

2

(
y (1)t y

(2) − y (2)t y
(1)
)
+ 1
2

[
u∗ (y (2))2 − u (y (1))2]} dt , (116)

N ≡
∫ +∞

−∞
y (1)y (2) dt . (117)

Varying expression (115) with respect to y (1) and y (2) produces equations (113)
and (114), i.e., eqs. (115)–(117) give an effective Lagrangian for the ZS equa-
tions. It is noteworthy that this Lagrangian exactly coincides with the eigenvalue
sought for; a similar fact is well known in quantum mechanics, where the linear
Schrödinger equation can be obtained by varying a functional which is the energy
eigenvalue (Landau and Lifshitz [1977]). However, an essential difference from
quantum mechanics is that the functional (115) is not real.
Note that the terms in expression (116) containing t-derivatives cancel

mutually if y (1) is proportional to y (2). Thus, variational ansätze for these
components should be functionally different. For example, if one uses Gaussian
trial functions, it is necessary to allow the two Gaussians to have shifted centers,
so that the ratio y (1)/y (2) would be t-dependent.
As a first example, one can take a rectangular pulse with an internal phase

jump D÷ = 2û:

u(t) =

{
0 if |t | > 1,
A exp(iû sgn t) if |t | < 1. (118)
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Here A is the real amplitude, and the width of the pulse can always be scaled to
be 2, as implied in eq. (118). The simplest possible ansatz for the Jost functions
corresponding to this pulse is

y (1)(t) =


2 exp(−m(t − 1)) if t > 1,

t + 1 if |t | < 1,
0 if t < −1.

(119)

y (2) =


0 if t > 1,

B(1 − t) if |t | < 1,
2B exp(m(t + 1)) if t < −1.

(120)

The integrals (116) and (117) calculated with this ansatz are

L = 2iB + 1
6A
[
B2
(
e−iû + 7eiû

)
−
(
7eiû + e−iû

)]
, N = 4

3B; (121)

note that they do not depend on m.
Substitution of expressions (121) into eq. (115) and varying the only nontrivial

parameter B yields B = ±i. Inserting this back into eq. (115), one obtains the
eigenvalues

Im l = −32 ± 2A cos û, Re l = ∓ 3
2A sin û. (122)

Since only the eigenvalue with Im l > 0 is meaningful, eq. (122) shows that,
with increasing area S ≡ 2A of the pulse (118), the soliton appears, with an
infinitesimal amplitude and finite velocity c = −92 tan û, at the threshold value

Sthr =
3

2 cos û
. (123)

In the case û = 0, when the ZS equations for the pulse (118) have an
exact solution, eq. (123) yields the threshold area 3

2 , while the exact result
is p /2 (Manakov [1973b]). Thus, the present crude approximation, using a
single variational parameter, gives an error < 5%. This approximation fails to
predict additional solitons which appear with a further increase of the area, the
total number of solitons produced by the rectangular box with û = 0 being
[(2S − p )/2p ] + 1 (Manakov [1973b]).
Equation (123) predicts that Sthr diverges in the limit 2û = p , when the

pulse (118) turns into a combination of two pulses with opposite signs. For
this case, an improved ansatz with an additional free parameter yields the
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result that the two-box configuration may produce only a pair of solitons
with equal amplitudes and opposite velocities, provided that A exceeds a
threshold value 3/23/2.
VA may also be applied for predicting the soliton content in the practically

important case of a chirped Gaussian pulse,

u0(t) = B exp
[
−
(
s 2 + ib

)
t2
]
, (124)

with real B, b and s . A natural form for the Jost-function ansatz is also
Gaussian,

y (n) = Bn exp
[
−(Wnt2 + 2znt)

]
, n = 1, 2, (125)

where the variational parameters Bn,Wn and zn may be complex, provided
that ReWn > 0. The subsequent calculation of the effective Lagrangian and
variation can be done analytically, but the expressions are cumbersome. Final
results are presented in fig. 11 as plots of the soliton amplitude h vs. the area of
the initial pulse at different fixed values of the initial chirp b (in all cases shown,

Fig. 11. Amplitude of the single soliton generated by an initial Gaussian chirped pulse (124)
vs. its effective area A ≡ B/

(√
ps
)
for s = 1 and different values of the initial chirp,

b = 0, 10, 20, 30, 40, 50.
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exactly one soliton is generated). These curves are almost the same as those
obtained numerically for the same problem by Kaup and Scacca [1980]. Note
that the plots clearly show the increase of the area necessary for the formation
of the soliton with an increase of the initial chirp.

§ 4. Internal dynamics of vector (two-component) solitons

4.1. General description

An important aspect of nonlinear fiber optics is copropagation of two or several
modes in one fiber. Although standard fibers are designed to admit propagation
of a single mode determined by its transverse structure (Agrawal [1995]), the
polarization of light makes the fiber bimodal. Another very important possibility
is to launch different modes carried by different wavelengths, which is the
basis of the wavelength-division multiplexing (WDM) technique. WDM is the
cornerstone of the present-day development of optical telecommunications, as
it allows to create many parallel channels in a single fiber core. In the latter
case, the most essential dynamical process is collision between two solitons
belonging to different channels. In the application to optical telecommunications,
quasi-random collisions in a multi-channel system are very detrimental, as
they generate random walk (temporal jitter) of the solitons, which interferes
with data transmission. VA can be naturally applied to the collision problem,
reducing it to interaction of particles, as was shown for a two-channel
system in an early work by Anderson and Lisak [1986b], and for multi-
soliton states in multi-channel systems by Ablowitz, Biondini, Chakravarty and
Horne [1998].
A related problem appears when two copropagating waves have their frequen-

cies on opposite sides of the fiber’s zero-dispersion point, so that one wave has
normal dispersion, and the other propagates at anomalous dispersion. While
only the latter wave can carry bright solitons, the normal-dispersion channel
can be used to launch a periodic structure (which, loosely, may be realized as a
periodic array of dark solitons). This support structure in the normal-dispersion
channel induces, through the XPM interaction, an effective periodic potential in
the soliton-carrying anomalous-dispersion channel (Shipulin, Onishchukov and
Malomed [1997], Malomed and Shipulin [1999]). The periodic potential may
be quite useful, helping to stabilize the temporal position of solitons against
the jitter (random walk) induced by interaction of a soliton with optical noise
in the fiber. The suppression of the jitter by the periodic support structure has
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been considered using a combination of variational and numerical methods. In
particular, the soliton dynamics reduce to an equation of motion for a particle in
a periodic potential under the action of a random driving force, which, in turn,
gives rise to the corresponding Fokker–Planck equation.
From the standpoint of applications of VA, the case of a bimodal system

corresponding to two polarizations in a nonlinear fiber is more interesting, as it
allows one to consider different types of vector two-component solitons and their
internal vibrations. Vector solitons in bimodal systems are considered below.
A basic model of a bimodal nonlinear fiber includes two nonlinearly coupled

NLS equations (see a detailed derivation by Menyuk [1987] and a book by
Agrawal [1995]) for the amplitudes u(z, t) and v(z, t) of the electromagnetic
waves in two linearly polarized modes,

iuz + icut + ku + 1
2utt +

(|u|2 + 2
3 |v|2

)
u + 1

3v
2u∗ = lv, (126)

ivz − icvt − kv + 1
2vtt +

(|v|2 + 2
3 |u|2

)
v + 1

3u
2v∗ = lu, (127)

where the asterisk stands for complex conjugation, and the terms ~±c and
±k take into account, respectively, the group-velocity and phase-velocity
birefringence due to deviation of the fiber’s cross-section from the ideal
circular shape (usually, the group-velocity birefringence is much weaker than
its phase-velocity counterpart). The nonlinear cross-coupling terms preceded
by the coefficient 23 are insensitive to the phase difference between the u and
v fields, and represent the cross-phase modulation (XPM) between the two
polarizations, induced by the Kerr effect. The phase-sensitive terms preceded
by the coefficient 13 account for another manifestation of the Kerr effect in a
multimode system, viz., four-wave mixing. Lastly, the linear-coupling terms (with
real l) on the rhs of the equations take into regard possible twist of the fiber,
which causes linear mixing between the two linear polarizations (Trillo, Wabnitz,
Banyai, Finlayson, Seaton, Stegeman and Stolen [1989]).
Equations (126) and (127) can be derived from the Lagrangian density

L = 1
2

[
(u∗uz + v∗vz + icu∗ut − icv∗vt ) + c.c.

]
+ k
(|u|2 − |v|2) − 1

2

(|ut |2 + |vt |2
)
+ 1
4

(|u|4 + |v|4)
+ 2
3 |u|2|v|2 + 1

6

[
u2 (v∗)2 + v2 (u∗)2

]
,

(128)

hence VA can be applied here. The dynamics of two-component solitons
governed by eqs. (126) and (127) are rather complicated if four-wave mixing
is taken into account, as the phase difference between the components will play
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the role of an additional degree of freedom, along with the widths of the two
components and the separation between their centers, see below. This problem
was analyzed by means of VA, neglecting the group-velocity birefringence and
twist-induced linear coupling, in the works of Muraki and Kath [1989, 1991]
and Anderson, Kivshar and Lisak [1991], and a generalization for a case when
the birefringence coefficient varies randomly along the fiber was developed by
Ueda and Kath [1992]. A similar analysis based on VA which, however, took
into account the group-velocity birefringence and linear coupling between the
polarizations was independently developed by Malomed [1991a]. In all these
works, the variational ansatz was based on sech, and results were presented
in the form of normal forms of various modes of intrinsic vibrations of two-
component solitons. As demonstrated by Malomed [1991a], in the presence of
the group-velocity birefringence, VA also makes it possible to explain another
interesting dynamical phenomenon: internal degrees of freedom of the two-
component soliton get coupled to the motion of its center of mass, so that the
internal vibrations generate periodic oscillations of the velocity at which the
soliton propagates (this effect had been known from direct numerical simulations
of eqs. (126) and (127) reported by Trillo, Wabnitz, Wright and Stegeman [1989]
and Wright, Stegeman and Wabnitz [1989]).
However, in a realistic situation the fiber birefringence is so strong that the

corresponding length of beatings between two polarization components is much
smaller than any propagation length relevant to the evolution of solitons, hence
both the four-wave-mixing nonlinear and twist-induced linear phase-dependent
coupling are negligible. Thus, the most fundamental model is based on the
simplified version of eqs. (126) and (127),

iuz + 1
2utt + (|u|2 + 2

3 |v|2)u = 0, (129)

ivz + 1
2vtt + (|v|2 + 2

3 |u|2)v = 0, (130)

in which the birefringence terms are dropped because they may be readily
eliminated in the absence of the phase-dependent couplings. The dynamics
of two-component solitons in this simplified model will be considered below,
following works by Ueda and Kath [1990], Kaup, Malomed and Tasgal [1993],
and Malomed and Tasgal [1998].
Notice that the XPM coefficient 23 in eqs. (129) and (130) is relatively close to

its special value 1, at which the two coupled NLS equations constitute a model
integrable by means of IST, as was found by Manakov [1973a]. The proximity to
the Manakov system can be used to develop a perturbative approach based on a
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combination of the Lagrangian and Hamiltonian representations of the equations
(Malomed [1991a]).
Before proceeding to detailed consideration of vector solitons, it is relevant

to mention another problem which appears in the model of a bimodal fiber,
in the case when the dispersion is normal, and NLS equations for two waves
with opposite circular polarizations are used. In this case, the XPM coefficient
in the coupled NLS equations is 2 (the same as for the interaction between
waves at different wavelengths) rather than 2

3 , see eqs. (129) and (130). While
bright solitons are impossible with normal dispersion, it was demonstrated by
Malomed [1994a] that another nonlinear structure occurs in this case, viz., an
optical domain wall, separating two temporal domains filled with waves having
opposite circular polarizations. Variational methods are quite useful in the study
of these domain walls and interactions between them.

4.2. Solitons in a bimodal birefringent fiber

4.2.1. Ansatz and stationary states

A general ansatz for vector solitons must make it possible to describe solitons
with different widths of their two components, as well as independent vibrations
of the two widths. Because a product of hyperbolic secants with different widths
cannot be integrated in analytical form, the only option is to adopt a Gaussian-
based approximation, as was first done by Kaup, Malomed and Tasgal [1993].
The ansatz for vector solitons generated by eqs. (129) and (130) is

u(z, t) = Au exp

[
−
1
2

(
t − yu
Wu

)2]
exp
{
i
[
÷u + bu(t − yu) + cu(t − yu)2

]}
, (131)

v(z, t) = Av exp

[
−
1
2

(
t − yv
Wv

)2]
exp
{
i
[
(÷v + bv(t − yv) + cv(t − yv)2

]}
, (132)

where, as usual, all the free parameters are real and are assumed to be functions
of z. The ansatz accommodates a pulse with arbitrary amplitudes (Au,Av),
widths (Wu,Wv), and central positions ( yu, yv). Each component is also allowed
to have arbitrary phase (au, av), central frequency (bu, bv), and frequency
chirp (cu, cv). Note that the ansatz admits splitting of the vector soliton into
single-component ones.
The VA technique yields a set of equation for the twelve parameters of

the ansatz. The set includes four dynamical invariants and six evolutional
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equations which are written below as three second-order equations. There are
also equations for the phases ÷u and ÷v which involve other variables but do
not themselves influence anything else, so they are not displayed below. The
dynamical invariants are the energies in the two modes and their net momentum,

Eu ≡ 1
2

∫ ∞

−∞
|u|2 dt =

√
p
2
A2u Wu, (133)

Ev ≡ 1
2

∫ ∞

−∞
|v|2 dt =

√
p
2
A2v Wv, (134)

P ≡
∫ ∞

−∞

i

2
(utu

∗ − uu∗
t + vtv

∗ − vv∗t ) dt =
d
dz
(Eu yu + Ev yv)

≡ −(Eubu + Evbv),
(135)

and the Hamiltonian of eqs. (129) and (130), which is not needed in an
explicit form. It is convenient to define the soliton’s polarization angle q ,
by tan2 q ≡ Ev /Eu.
The equations of motion for the widths Wu,v and relative position y ≡ yu − yv

of the components of the vector soliton are

d2

dz2
Wu = W

−3
u −

Eu√
2p
W −2
u

−
4

3
√
p
EvWu

(
W 2
u +W

2
v

)−3/2(
1 −

2y2

W 2
u +W 2

v

)
exp

(
−

y2

W 2
u +W 2

v

)
,

(136)

d2

dz2
Wv = W

−3
v −

Ev√
2p
W −2
v

−
4

3
√
p
EuWv

(
W 2
u +W

2
v

)−3/2(
1 −

2y2

W 2
u +W 2

v

)
exp

(
−

y2

W 2
u +W 2

v

)
,

(137)

d2

dz2
y =

d
dz
(−bu + bv)

= −
4B

3
√
p
(Eu + Ev)

(
W 2
u +W

2
v

)−3/2
y exp

(
−

y2

W 2
u +W 2

v

)
,

(138)

and cu = (2Wu)−1(d/dz)Wu, cv = (2Wv)−1(d/dz)Wv.
Fixed points (FPs) of eqs. (136)–(138) correspond to steady-state vector

solitons with y = cu = cv = 0. The corresponding stationary values of the widths
were first found, by means of VA, in a paper by Kaup, Malomed and Tasgal
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[1993] (independently, the same family of general stationary solitons was found
in a purely numerical form by Haelterman, Sheppard and Snyder [1993]):

Wu =

√
p /2
Eu

[
1 − 2

3 r
4

(
2

r2 + 1

)3/2]/[
1 −

4
9

(
2r
r2 + 1

)3]
, (139)

Wv =

√
p /2
Ev

[
1 −

2
3
r−1
(

2
r2 + 1

)3/2]/[
1 −

4
9

(
2r
r2 + 1

)3]
, (140)

where the width ratio r ≡ Wu /Wv is determined by

2
3

(
2

1 + r2

)3/2(
r4 −

Eu
Ev

)
+
Eu
Ev
r − 1 = 0. (141)

Thus, the energies of the two modes Eu and Ev are free parameters of
the stationary vector soliton, which determine its amplitudes Au and Av and
widthsWu andWv according to the above equations. While the relative frequency
(bu − bv) is zero at the fixed point, the mean frequency (bu + bv)/2 can take any
constant value, a nonzero one adding a net momentum to the soliton, making it
“walking”.
Table 1 summarizes the VA predictions for the parameters of the stationary

vector soliton in a range of polarization angles. The values of the widths in the
table refer to either the Gaussian ansatz with net energy E ≡ Eu + Ev =

√
p /2, or

(see below) a hybrid Gaussian–sech ansatz with E = 1. Note that the negativeness
of the Hamiltonian is a necessary existence condition for the soliton (if the
Hamiltonian is positive, the pulse will decay into radiation). The stationary
widths for other values of the energies can be obtained from table 1: in either
ansatz, the widths scale as the reciprocal of the net energy, so, to obtain the
widths for arbitrary net energy E, the values in table 1 should be multiplied by

Table 1
Widths of the two components predicted for the stationary vector soliton by the variational
approximation based on the Gaussian ansatz with total energy E =

√
p /2 or the sech ansatz with

total energy E = 1, for different values of the vector soliton’s polarization angle q

Polarization q (º)

0 5 10 15 20 25 30 40 45

Wu 1.0000 1.0038 1.0149 1.0330 1.0571 1.0860 1.1175 1.1774 1.2000

Wv n/a 1.1881 1.1930 1.2003 1.2089 1.2168 1.2220 1.2150 1.2000
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(
√
p /2/E) or (1/E), for the Gaussian or sech ansatz, respectively. For polarization

angles > 45◦, one should take the complement of the angle and interchange
u and v.

4.2.2. A hybrid ansatz

In the exactly solvable cases, v = 0 or u = v, when the coupled system
degenerates into a single NLS equation, and in the Manakov system, exact
vector-soliton solutions have |u| = Asech sech(t/W sech), with width and amplitude
related to those predicted by the Gaussian ansatz in a simple way:

W sech =

√
2
p
WGauss, Asech =

√
p
23/2

AGauss, (142)

provided that the energy of the soliton, E ≡ (Asech)2W sech, is equal to that of
the Gaussian ansatz. This relation suggests that making the same adjustment in
the final results produced by the Gaussian-based VA, i.e., replacing the Gaussian
by the sech pulse with the parameters rescaled according to eq. (142), may help
to get the approximate vector-soliton shape closer to the true pulse shape. To
estimate the importance of the adjustment, one can note that, in the solvable
cases, the standard FWHM width predicted by the Gaussian approximation
differs from that of the exact sech soliton with the same energy by a factor
(
√
2 cosh−1

√
2)/

√
p ln 2] ≈ 0.845.

Thus, to improve the accuracy of VA, one may take a solution to eqs. (136)–
(138), which govern the evolution of the parameters of the Gaussian ansatz, and
insert the solution not into the Gaussian ansatz but rather into

u(z, t) = Asechu sech

(
t − yu
W sech
u

)
exp
[
i(÷u + bu(t − yu) + cu(t − yu)2)

]
, (143)

v(z, t) = Asechv sech

(
t − yv
W sech
v

)
exp
[
i(÷v + bv(t − yv) + cv(t − yv)2)

]
, (144)

with the widths and amplitudes rescaled according to eq. (142).
Comparison with numerical simulations clearly shows advantages offered

by the hybrid ansatz. It was observed that, starting with the initial conditions
corresponding to the FP (139)−(141), predicted by the Gaussian-based VA, more
than 99% of the initial energy is ultimately retained by the soliton, with the
exact size of the radiative losses slightly depending on the soliton’s polarization
angle q . So, by this measure – the share of the net energy going into the soliton –
the predictions of the Gaussian VA are very good. However, in terms of the
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Fig. 12. (a) Evolution of the vector soliton widths produced by simulations of eqs. (129) and (130),
starting from the initial condition predicted by the usual Gaussian approximation for the vector
soliton with polarization q = 30◦ and energy E =

√
p /2. (b) Same, starting from the initial conditions

predicted by the hybrid Gaussian–sech approximation, based on eqs. (142)–(144). The larger and
smaller widths pertain to the less energetic and more energetic components of the vector soliton,

respectively.
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eventual widths of the vector solitons, the agreement of the same version of
VA with the numerical results is worse, with a relative error of about 16 . To
illustrate, fig. 12a shows the numerically simulated evolution of the pulse widths,
starting from the fixed point of the usual Gaussian approximation, with total
energy E =

√
2p and polarization q = 30◦.

The hybrid approximation, based on eqs. (142)–(144), yields much more
accurate predictions for the widths of the stationary states than the usual
Gaussian VA: even in the worst case the relative error is below 1%, while in
most cases the accuracy is even higher than that. The radiative energy shed by the
evolving vector soliton starting from the hybrid ansatz was too small to measure,
being much less that 1%, which is another drastic improvement offered by the
hybrid VA model. Figure 12b illustrates this, showing the evolution of the widths
in the simulations, starting from the stationary solution as predicted by the hybrid
model with total energy E =

√
2p and polarization q = 30◦.

4.2.3. Intrinsic vibrations of a vector soliton

For small oscillations around the stationary vector soliton, linearization of
eqs. (136)–(138) shows that small vibrations of the separation y between the
two components decouple from vibrations of the widths Wu and Wv. Two distinct
eigenmodes of the width vibrations can be identified: one “in-phase”, with both
widths oscillating synchronously, the other “out-of-phase”, with the two widths
oscillating with a phase shift p (Kaup, Malomed and Tasgal [1993]).
For the case q = 45◦, when the energy of the vector soliton is equally divided

between its two components, the y- and in-phase width oscillation eigenmodes
were first identified by Ueda and Kath [1990]. In this case, the eigenfrequencies
of the separation (y-), in-phase-width, and out-of-phase-width vibration modes,
calculated by means of the sech ansatz, are

(
ksechy , ksechin , ksechout

)
= (0.50, 0.69, 0.99) · 2E

2

p
. (145)

The same eigenfrequencies were found from direct simulations by Malomed and
Tasgal [1998] to be

(
knumy , knumin , knumout

)
= (0.53, 0.54, 0.56) · 2E

2

p
. (146)

Comparison with eq. (145) shows a large error of the VA-based prediction for the
in-phase-width mode, and a very large error for the out-of-phase-width mode.
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The stability and instability of different oscillation modes of the perturbed
vector soliton can be predicted by considering the unperturbed one as a
nonlinear structure that protects itself from decay into radiation by placing its
eigenfrequency in a spectral gap in which radiation modes do not exist. In other
words, the unperturbed soliton is, essentially, a gap soliton, as defined in the
review by de Sterke and Sipe [1994]. In particular, for the case q = 45◦, the
gaps in the spectra of the spatial frequencies k for u- and v-components are
identical, and they can easily be found in exact form from eqs. (129) and (130)
linearized around the stationary soliton, without resorting to VA:

|k| < 0.5454 · 2E
2

p
. (147)

If the mode’s eigenfrequency lies inside the continuous spectrum (outside the
band gap), the oscillation mode couples to the radiation and is therefore subject
to decay. Comparing the eigenfrequencies (146) with the spectral gap (147),
one concludes that the predicted frequency of the separation oscillations ky
belongs to the gap, and the frequency of the in-phase-width oscillations is located
virtually exactly at the edge of the gap. In contrast with these, the frequency
of the out-of-phase-width oscillations lies deep inside the continuous spectrum.
These conclusions suggest that the oscillations of the separation between the
two components of the vector soliton should be the stablest eigenmode, while
the out-of-phase width oscillations should be unstable.
The system of ODEs (136)–(138) produced by VA also predicts the possibility

of dynamical chaos if the vector-soliton’s internal vibrations have sufficiently
large amplitude. However, in the corresponding PDE simulations, the degree of
freedom corresponding to the out-of-phase-width oscillations dies out quickly,
which actually prevents the appearance of chaos (Malomed and Tasgal [1998]).
It is relevant to mention work by Yang [1997a] (see also Yang [1997b]), who

studied the vibrations of vector solitons and emission of radiation from them via
a different method, based on numerical algorithms for determining the true form
of the small vibrations. This work provides a considerable advance in detailed
understanding of the dynamics of small vibrations in vector solitons; in partic-
ular, the out-of-phase mode of the width vibrations was identified there with a
combination of radiation modes, which accords with the results outlined above.
Vector solitons with more than two components can also be considered in a

model of several waves carried by different frequencies and interacting via XPM.
By means of a combination of variational and numerical methods, a three-
component vector soliton of this type was considered by Tran, Sammut and
Samir [1994].
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4.3. Resonant splitting of a vector soliton in a bimodal fiber with periodically
modulated birefringence

It is quite easy to fabricate a bimodal optical fiber with periodically modulated
birefringence, which gives rise to a model with a group-velocity difference
between two polarization modes that changes sign periodically. This suggests
a possibility of a resonance between the separation mode of internal vibration
of the vector soliton, considered above, and the periodic modulation of the
birefringence.
This model was introduced by Malomed and Smyth [1994]. It is based on

coupled equations (cf. eqs. 126 and 127)

iuz + ic(z)ut + 1
2utt + (|u|2 + B|v|2) u = 0, (148)

ivz − ic(z)vt + 1
2vtt + (|v|2 + B|u|2) v = 0, (149)

where physically relevant values of the XPM coefficient are B = 2
3 and B = 2

corresponding, as explained above, to linear and circular polarizations. The
group-velocity difference between the polarizations is assumed to be modulated
as

c(z) = e sin(kz). (150)

In what follows, we set k ≡ 1, which can always be achieved by obvious
rescaling.
In order to derive equations for internal oscillations of the vector soliton, the

following ansatz is adopted (cf. eqs. 131 and 132):

u = A(z) sech

(
t − y(z)
W (z)

)
exp
[
i÷1(z) + iW(z)(t − y(z)) + ib(z)(t − y(z))2

]
, (151)

v = A(z) sech

(
t + y(z)
W (z)

)
exp
[
i÷2(z) − iW(z)(t + y(z)) + ib(z)(t + y(z))2

]
. (152)

Straightforward VA-based calculations lead to the following equations of motion
for the separation y(z) between the centers of the two components and their
common width W (z):

d2y
dz2

= 2BKW −2F ′
(
2y
W

)
+ û cos z, (153)

d2W
dz2

=
4
p2

{
W −3 − KW −2 − 3BKW −2

[
F

(
2y
W

)
+
2y
W
F ′
(
2y
W

)]}
, (154)
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where K ≡ A2W is the dynamical invariant which represents the conserved
energy in each polarization (the notation K for energy is used instead of E in
this section), and F(x) ≡ (x cosh x − sinh x) / sinh3 x.
At e = 0, the system of equations (153) and (154) has a fixed point (FP)

at y = 0, W = (1 + B)−1K−1, which corresponds to the stationary vector
soliton. Linearizing the equations in a vicinity of the FP, one readily finds two
eigenfrequencies of small oscillations in the absence of the periodic modulation:

q2y = 16
15B(1 + B)

3K4, (155)

q2W =
4
p2
(1 + B)4K4, (156)

where the subscript indicates the type of the corresponding eigenmode.
Several different types of resonance between the internal vibrations of the

vector soliton and the periodic modulation of the birefringence are possible. The
simplest (fundamental) resonance is expected for the value of the soliton’s energy
at which

K−4 = 16
15B(1 + B)

3, (157)

when, according to eq. (155), the eigenfrequency qy coincides with the
modulation wave number (which is 1 in the notation adopted). A second-order
resonance may take place at

K−2 =
(1 + B)2

p
, (158)

when qW = 2 according to eq. (156). Indeed, eq. (153) shows that in this case
the variable y is driven at the frequency 1, and, in turn, it resonantly drives the
variable W through eq. (154) at the frequency 2.
In order to realize how the resonances predicted by considering small internal

vibrations of the vector soliton manifest themselves, the system of equations
(153)−(154) was simulated numerically. It was found that, with increasing
modulation amplitude e, the driven vibrations of the vector soliton become
more and more chaotic and, finally, the vector soliton is split into two single-
component ones, which corresponds to y → ∞ at z → ∞ in terms of eqs.
(153) and (154), at a certain critical value ecr. Figure 13 shows an example of the
evolution of the separation y(z), finally resulting in splitting, in the case when e
slightly exceeds ecr.
A numerically found dependence of ecr on energy K is shown (for B = 2, i.e.,

circular polarizations) in fig. 14. In this case, eqs. (157) and (158) predict the
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Fig. 13. Example of the splitting of a vector soliton into two single-component solitons under the
action of a periodically modulated birefringence, as predicted by simulations of eqs. (153) and (154)
with B = 2

3 (i.e., for linear polarizations), at K = 0.8 and e = 0.13 (slightly above the splitting
threshold).

Fig. 14. Critical amplitude of birefringence modulation, ecr , vs. soliton energy K , as obtained from
simulations of eqs. (153) and (154) with B = 2 (i.e., for circular polarizations).

fundamental and second resonances at K = 0.363 and K = 0.591, respectively.
The plot in fig. 13 indeed has the deepest and second-deepest minima fairly close
to these two points. The accuracy with which the positions of the minima are
predicted by eqs. (157) and (158) is remarkable, as the analytical results were
obtained from the consideration of small oscillations, while the splitting implies
indefinitely large amplitudes of the oscillations prior to the splitting.
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§ 5. Spatially nonuniform fibers and dispersion management

5.1. Dispersion-decreasing fibers

As was explained in detail in § 2.1.4, the problem of compression of a pulse in
an optical fiber without disturbing the pulse’s fundamental-soliton character is
of great practical importance. If the original pulse is already sufficiently narrow
in the temporal domain, and/or the fiber’s dispersion is high enough, so that the
soliton period (see eq. 8) is not too large, a natural idea is to pass the soliton
through a long piece of fiber with a gradually decreasing dispersion coefficient
(Kuehl [1988]). If the length of the piece essentially exceeds the soliton period,
one may hope that the pulse will adiabatically follow the decreasing dispersion
coefficient, while remaining the fundamental soliton. This idea was realized
in dispersion-decreasing fibers (DDF), in which the variable dispersion is
created by tapering the fiber, i.e., gradually varying the diameter of its core.
Experimentally, high-quality strong compression of fundamental solitons by
means of DDF has been demonstrated in a number of works, e.g., by Chernikov,
Dianov, Richardson and Payne [1993].
DDF may find a particular application in improvement of the amplification

of (sufficiently narrow) solitons in a long fiber-optic communication link, as
proposed by Malomed [1994b]. A problem is that, as a matter of fact, a linear
(erbium-doped) amplifier instantaneously multiplies the soliton temporal profile
by an amplification factor, transforming the fundamental soliton into a “lump”,
that will later split into an amplified soliton proper and a noisy radiation
component. However, the amplified pulse may be fed immediately into a fiber
with a higher dispersion value, for which it will remain a fundamental soliton,
and then DDF can adiabatically transform it into a fundamental soliton adjusted
to the value of the dispersion in the system (bulk) fiber.

5.2. Formation of a soliton from a pulse passing a zero-dispersion point

An interesting realization of the situation considered above is when the disper-
sion is varied along the propagation length so that it changes from normal to
anomalous. As proposed by Malomed [1993], in that case a pulse launched in the
normal-dispersion part of the fiber may self-trap into a soliton after passing the
zero-dispersion point (ZDP). The process can be analyzed by means of VA, using
the general equations (32) and (33) with the variable D(z). The most essential
prediction is that formation of a soliton is possible if the pulse’s energy exceeds a
certain threshold, which is proportional to the value of the slope dD/dz at ZDP.
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Fig. 15. Comparison of results produced by direct simulations of the NLS equation (solid curves)
with the variable dispersion coefficient passing through zero and simulations of the variational
equation (32) (dashed curves) in the same case. For energy E = 4 and area M = p /2 of the initial
pulse (159), we show (a) the evolution of the field amplitude |u| at the center of the pulse, t = 0,

and (b) the temporal shape of the pulse, |u(t)|, at the point z = 1.

This process was simulated numerically by Clarke, Grimshaw and Malomed
[2000], within the framework of eq. (2) with g ≡ 1 and D(z) taken in the
simplest form providing for the continuous passage through ZDP (at z = 0):
D(z) ≡ sgn(z) at |z| > 1, and D(z) = z at |z| < 1. In fact, the simulations
commenced at z = −1 with the initial pulse

u(z = −1, t) = A sech(ht). (159)

Thus, the possible outcomes of the process are controlled by two positive
parameters A and h introduced in eq. (159), i.e., by the energy and area of the
initial pulse, which are E = 2A2/h and M = pA/h according to eqs. (10) and (9)
[in this section, the definition of energy does not include the factor 12 in front of
the integral in eq. (10), and the symbol for the area is M (“mass” of the soliton)
instead of S].
Comparison of direct PDE simulations with those of the variational dynamical

equation (32) has demonstrated that the agreement between them is quite good
for sufficiently narrow initial pulses, for which VA is expected to be applicable,
see fig. 15 for an example. Results of many simulations are summarized in
a diagram showing qualitatively different outcomes of the pulse evolution for
different values of the initial area and energy (fig. 16). These outcomes may
be: decay of the pulse into radiation, formation of a single fundamental soliton,
formation of a higher-order soliton (breather), and also formation of a pair of
two separating fundamental solitons. A noticeable feature of the diagram is a
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Fig. 16. Chart showing different outcomes of the evolution of a pulse (159) passing from normal to
anomalous dispersion, for different values of the pulse’s initial area M = pA/h and energy E = 2A2/h.
Symbols: R, decay into radiation; S, formation of a single fundamental soliton; B, formation of a

breather; C, formation of a pair of separating fundamental solitons.

virtually direct transition from the single-soliton state to the pair of separating
solitons (regions S and C in fig. 16), although, in theory, the transition may only
occur via an intermediate breather state. Plausibly, the intermediate layer is so
thin that it cannot be seen in the computer-generated diagram.

5.3. Fibers with periodically modulated dispersion

5.3.1. Variational analysis

The fact that VA predicts persistent internal vibrations of a perturbed soliton,
described in the exact parametric form by eq. (38) or in the approximation of
small oscillations by eq. (36), suggests a possibility of resonances between these
vibrations and a periodic modulation of the local dispersion coefficient along the
fiber. This problem was considered first by Malomed, Parker and Smyth [1993],
who assumed the simplest sinusoidal form of the modulation,

D(z) = 1 + e sin z, (160)

where it is implied that the period of the modulation may always be made
equal to 2p by means of a rescaling of the NLS equation (2). Possible nonlinear
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resonances were studied analytically, assuming e � 1, expanding the dynamical
equation (32) around the equilibrium position (35), and retaining quadratic and
cubic nonlinear terms in the expansion. The fundamental resonance corresponds
to the case when the spatial frequency K0 of free small oscillations near the
equilibrium position (see eq. 36) is close to the spatial modulation frequency,
which is 1 in eq. (160). Also considered in detail were the first subharmonic
resonance, corresponding to K0 close to 1

2 , and the second-order resonance,
which takes place for K0 close to 2.
The main subject of the analysis was possible destruction of the soliton

under the action of the periodic dispersion modulation. VA based on the simple
ansatz (13) predicts destruction of the soliton if a corresponding solution to
eq. (32) has a(z) → ∞ at z → ∞: this means the soliton becomes infinitely
broad, decaying into radiation.
Of course, the consideration of resonances in the small vibrations of the

soliton near its equilibrium configuration does not make it possible to produce
solutions which give rise to the destruction of the soliton. In order to predict a
possible decay, the full dynamical equation (32) with D(z) in the form (160) was
solved numerically. In an interval of soliton energies covering both the above-
mentioned first subharmonic resonance and the second-order resonance, it was
found that oscillations driven by the sinusoidal modulation are anharmonic but
still periodic at very small values of the amplitude, typically e ≈ 0.01. They
become nonperiodic (possibly quasiperiodic) at larger values of the modulation
amplitude, e ≈ 0.05; with a subsequent increase of e, the oscillations get
apparently chaotic (at e � 0.20), and, finally, a critical value ecr can be found
such that, at e slightly larger than ecr, the particle performs a rather large number
of irregular oscillations inside the potential wall, but is finally kicked out of
the trapped state and escapes to infinity. As explained above, this result implies
eventual decay of the soliton into radiation. In all the cases considered, the
critical modulation amplitude took values

0.20 < ecr < 0.25. (161)

The sequence of different dynamical regimes observed with increasing e is
illustrated by a set of typical plots in fig. 17, which pertain to the case K0 = 2,
i.e., E =

√
p , when eq. (36) predicts the second-order resonance.

When the modulation amplitude e is small, the rate of direct emission of
radiation by the soliton can be calculated by means of perturbation theory, as
done by Abdullaev, Caputo and Flytzanis [1994]; the role of radiation loss in
the destruction of the soliton is considered in detail in the next subsection.
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Fig. 17. Typical solutions to eq. (32), with the effective potential (33) and D(z) taken as per eq. (160).
The energy of the soliton is E =

√
p , which corresponds to the frequency K0 = 2 of small free

vibrations (36) of the soliton near its equilibrium shape. The modulation amplitude is (a) e = 0.01,
(b) e = 0.05, and (c) e = 0.25, the latter value being slightly larger than the critical amplitude which

gives rise to destruction of the soliton.
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Fig. 18. Phase diagram in the parametric plane (e,E2) of the NLS equation with the local dispersion
modulated as per eq. (160). The solid and open rectangles correspond, respectively, to stable and

splitting solitons.

5.3.2. Comparison with direct simulations

Grimshaw, He and Malomed [1996] compared the VA predictions for a soliton in
a fiber with sinusoidally modulated dispersion with results of direct simulations
of the NLS equation (2) with g ≡ 1 and D(z) taken as per eq. (160). Results
of systematic simulations are summarized in fig. 18. Two gross feature of this
diagram roughly comply with the predictions of VA. Firstly, destruction of the
soliton may take place if the modulation amplitude exceeds a critical value,
which varies, essentially, within the interval 0.15 < ecr < 0.20, that should be
compared to the interval (161) predicted by VA. Secondly, destruction of the
soliton actually takes place, for e not too large, if the initial squared soliton
energy E2 exceeds a minimum value E2min varying between 1.8 and 2.0, which
may be compared with the value E2 = 1

2p that, according to eq. (36), gives rise
to the fundamental resonance between small vibrations of the perturbed soliton
and the periodic modulation (160).
The most essential qualitative difference between the assumptions on which

VA was based and numerical results is that the fundamental mode of the soliton
destruction under the action of the sinusoidally modulated dispersion is not decay
into radiation, but splitting of the soliton into two apparently stable secondary
solitons, which is also accompanied by emission of a considerable amount of
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Fig. 19. Typical example of the splitting of a fundamental soliton into two secondary ones in the
NLS equation with sinusoidally modulated dispersion, observed at e = 0.3 and E2 = 2.9, cf. fig. 18.

radiation. A typical example of this splitting in displayed in fig. 19. Obviously,
the ansatz (13) does not admit any splitting; nevertheless, VA predicts the
basic characteristics of the destruction of the soliton qualitatively and semi-
quantitatively correctly, even if the actual destruction mode is different from that
implied by VA.
Detailed inspection of the numerical results presented by Grimshaw, He and

Malomed [1996] shows that, prior to splitting, the soliton performs a number of
irregular vibrations, which resembles the picture produced by VA, see fig. 17c.
In accordance with that picture, the vibrational stage preceding the destruction
of the soliton is quite long if the splitting takes place at e slightly exceeding ecr.
The soliton stability diagram for the sinusoidally modulated model, displayed

in fig. 18, has a number of other interesting features, such as a “stability isthmus”
and general restabilization of the soliton at large e [note that for e > 1, the
local dispersion becomes sign-changing according to eq. (160)]. However, these
features are found too far outside the domain of applicability of VA.
Very interesting additional results concerning the comparison between VA and

direct simulations in the above model were obtained by Abdullaev and Caputo
[1998]. They have also found that the destruction of the soliton takes place via
splitting into two secondary ones, and demonstrated that agreement between VA
and direct simulations is fair as long as the frequency K0 of the small vibrations
(see eq. 36) remains smaller than the modulation spatial frequency (equal to 1
in the present notation). At K0 � 1, intensive emission of radiation takes place
(even without complete destruction of the soliton), which, naturally, strongly
deteriorates the agreement with VA, that completely disregards the radiation
component of the field. These conclusions are illustrated by figs. 20 through 22,
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Fig. 20. Comparison between oscillations of the soliton width as predicted by VA (dashed curve)
and found by Abdullaev and Caputo [1998] from direct simulations of the NLS equation (solid

curve) with sinusoidally modulated dispersion at K0 =
1
4 and e = 0.1.

Fig. 21. Same as fig. 20, but for e = 0.6. Both VA and direct simulations predict destruction of the
soliton in this case.

Fig. 22. Same as fig. 20, but for K0 = 1 and e = 0.2. In this case, VA predicts decay of the soliton,
but in direct simulations it remains stable, as the internal vibrations predicted by VA are strongly

damped by radiation losses.
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which compare the analytical and direct numerical results for different values
of K0 and e. Note that the destruction of the soliton in the case shown in fig. 21
actually proceeds via splitting. Another important numerical finding reported by
Abdullaev and Caputo [1998] is that, in cases when the variational and direct
numerical results are generally close, a more subtle (and quite natural) effect of
radiation losses is strong suppression of higher harmonics in the soliton’s internal
vibrations predicted by VA.

5.4. Dispersion management

In application to real optical telecommunications, the concept of variable
sign-changing dispersion has gained great popularity under the name of
dispersion management (DM). For long fiber-optic links, however, the use of
fibers with harmonically modulated dispersion, as in eq. (160), is impractical.
A much simpler possibility, which is DM proper, is to build a long link
composed of periodically alternating segments with positive (normal) and
negative (anomalous) dispersion, so that the path-average dispersion (PAD)
is close to zero. It is necessary to stress that this concept, in the form of
periodic dispersion compensation, has been known for a long time, and has
been implemented in existing telecommunication networks, in application to the
linear regime of optical signal transmission (Lin, Kogelnik and Cohen [1980]).
However, a great deal of interest in the propagation of optical solitons in
dispersion-compensated links has arisen not long ago, starting with works by
Smith, Knox, Doran, Blow and Bennion [1996] and others (in particular, Knox,
Forysiak and Doran [1995], Suzuki, Morita, Edagawa, Yamamoto, Taga and
Akiba [1995], Nakazawa and Kubota [1995], Gabitov and Turitsyn [1996]).
VA is a natural technique for the analysis of DM schemes; therefore it was

used in numerous works (see papers by Berntson, Anderson, Lisak, Quiroga-
Teixeiro and Karlsson [1996], Gabitov, Shapiro and Turitsyn [1997], Matsumoto
[1997], Malomed [1997], Turitsyn [1997], Lakoba, Yang, Kaup and Malomed
[1998], Turitsyn, Gabitov, Laedke, Mezentsev, Musher, Shapiro, Schäfer and
Spatschek [1998], Kutz, Holmes, Evangelides and Gordon [1998], Berntson,
Doran, Forysiak and Nijhof [1998], and Turitsyn, Aceves, Jones, Zharnitsky and
Mezentsev [1999]). Very recently, the approach proposed originally by Kath and
Smyth [1995] in order to incorporate the radiative component of the field into
VA for the usual NLS equation was generalized by Yang and Kath [2001] for
the case of DM. A common feature of different forms of VA developed for
DM models is that they are based on the Gaussian (rather than sech) ansatz, as
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the Gaussian provides for an exact solution to the linear Schrödinger equation in
the dispersion-compensated model, see below, and is therefore the most natural
basis for VA.
When PAD is close to zero, it may be necessary to take into account third-

order dispersion (TOD). The VA technique for a DM system including TOD
was worked out by Hizanidis, Efremidis, Malomed, Nistazakis and Frantzeskakis
[1998] (the TOD coefficient was assumed to be constant). Comparison with
direct simulations has demonstrated that VA makes it possible to take TOD into
account in quite an accurate form.
It is relevant to mention that description of DM solitons may be based not

directly on the corresponding NLS equation in the temporal domain, but rather
on its integral counterpart in the frequency domain, as shown by Ablowitz and
Biondini [1998] (see also a work by Paré, Roy, Lesage, Mathieu and Bélanger
[1999]). In relation to this, an interesting version of VA for the DM model was
proposed by Paré and Bélanger [2000]: using the fact that the above-mentioned
integral equation can be derived from its own Lagrangian, VA can be applied to
this equation. In fact, contrary to the usual approach, this implies approximating
the DM soliton by means of an ansatz (for which the Gaussian form was adopted)
not continuously along the fiber link, but only at junctions between the DM cells.
It was demonstrated that results produced by this version of VA are in fairly good
agreement with direct simulations.
The version of VA for DM pulses which is presented below follows,

chiefly, the works by Lakoba, Yang, Kaup and Malomed [1998] and Malomed
and Berntson [2002]. The NLS equation governing pulse propagation in the
DM transmission line is

iuZ + 1
2d(Z)uTT + |u|2u = 0, (162)

where d(Z) is the local piecewise-constant dispersion coefficient, so that

d(Z) =
{
d1, 0 < Z < L̃1 ,
d2, L̃1 < Z < L̃1 + L̃2 ≡ Lmap,

(163)

which is repeated periodically, Lmap being the DM period. The most interesting
case is then the strong-DM regime, corresponding to the situation with
Lmap � 1/P0 and t2p � |d1L̃1| ≈ |d2L̃2|, where P0 and tp are the peak
power and width of the pulse. In terms of rescaled variables, z ≡ Z /Lmap,

t ≡ T /
√
L̃1L̃2|d1 − d2|/Lmap, eq. (162) takes the form

iuz − 1
2b(z) utt +

(
−12b0utt + |u|2u) = 0, (164)
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with

b0 ≡ −
d1L̃1 + d2L̃2
L̃1L̃2|d1 − d2|

, (165)

b(z) =

{
D1 = sgn(D̃1 − D̃2) · L1, 0 < z < L1,

D2 = sgn(D̃2 − D̃1) · L2, L1 < z < 1
(166)

(which is repeated with period 1), where b0 is PAD and L1,2 ≡ L̃1,2/Lmap, so that
the coefficients are subject to normalizations

D1L1 +D2L2 = 0, |D1L1| = |D2L2| = 1. (167)

In the strong-DM case, PAD and nonlinearity are much weaker than the local
dispersion, hence the expression in brackets in eq. (164) is a small perturbation.
A well-known exact solution of eq. (164) in zero-order approximation, when the
perturbation is omitted, is the Gaussian pulse

u0 =

√
P0

1 + 2i(D(z) /t20 )
exp

[
−

t2

(t20 + 2iD(z))
+ i÷
]
. (168)

Here P0 and t0 are, respectively, the peak power and minimum width of the
pulse over one DM period, D(z) = D0 −

∫ z
0 b(z

′) dz′ is accumulated dispersion
(from which a contribution produced by PAD is subtracted), and D0 and ÷ are
real constants. To better realize the meaning of the parameters introduced in the
above expression, one can compare it to the standard form of the Gaussian pulse,

u0 = a(z) exp

[
−
t2

W 2(z)
+ ic(z) t2 + i÷

]
; (169)

then its amplitude a(z), width W (z) and chirp c(z) are expressed in terms of the
parameters introduced in eq. (168) as follows:

a(z) =

√
P0

1 + 2i(D(z) /t20 )
, W (z) =

√
t40 + 4D(z)2

t0
, c(z) =

2D(z)
t40 + 4D(z)2

.

(170)
The parameter t0, which is dimensionless in view of the normalization
conditions (167), plays a dominant role below; in works on this topic, another
constant is frequently used, called DM strength,

S ≡ 1.443

t20
(171)

(Berntson, Doran, Forysiak and Nijhof [1998]; the factor 1.443 appears due to
the use of the FWHM definition of the width of the Gaussian pulse).
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The exact solution (168) of the linear-DM model is used as the variational
ansatz for the nonlinear model. The application of VA yields the following
evolution equations for the parameters of the ansatz:

dt0
dz

=
√
2
Et0D(z)
W 3(z)

, (172)

dD0
dz

= −b0 +
E
[
4D2(z) − t40

]
2
√
2W 3(z)

, (173)

where, as usual, the soliton’s energy P0t0 ≡ E is the dynamical invariant. In
fact, E plays the role of a small parameter measuring the relative weakness of
the nonlinearity in comparison with the local dispersion.
An issue of fundamental interest is to find conditions allowing for the

stationary propagation of the pulse, i.e., a dynamical regime in which the
parameters t0 and D0 return to their initial values after passing one DM period.
Because, as seen from eqs. (172) and (173), changes of t0 and D0 within one
period are small ~ ( b0,E), in first approximation one may insert unperturbed
values of t0 and D0 into the rhs of eqs. (172) and (173), and demand that (recall
the DM period is 1 in the present notation)∫ 1

0

dt0
dz
dz =

∫ 1

0

dD0
dz

dz = 0. (174)

This yields the stationary-propagation conditions for the Gaussian pulse in an
explicit form:

D0 = − 12 , b0 =

√
2
4
A2t40

ln(√1 + 1
t4
+
1
t2

)
−

2√
t40 + 1

 . (175)

The meaning of the condition D0 = − 12 is quite simple: it requires the pulse to
have zero chirp at the midpoint of each fiber segment.
The second of conditions (175) predicts that the DM soliton propagates

steadily at anomalous PAD, b0 < 0, provided that t20 >
(
t20
)
cr

≈ 0.30, at b0 = 0 if
t20 =

(
t20
)
cr
, and at normal PAD, b0 > 0, if

(
t20
)
min

≈ 0.148 < t20 <
(
t20
)
cr
. The

latter case is quite interesting, as the classical NLS soliton cannot exist at normal
dispersion. Further analysis of eq. (175) shows that, in this case, the solution
exists in a limited interval of the normal-PAD values,

0 �
b0
E
�

(
b0
E

)
max

≈ 0.0127. (176)

Inside this interval, eq. (175) yields two different values of the minimum width t0
for a given value of b0/E, while in the anomalous-PAD region, t0 is a uniquely
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Fig. 23. Peak power of the stationary DM soliton vs. map strength at different values of the path-
average dispersion b0 (≡ b0), as predicted by the variational approximation based on eq. (175).
Asterisks mark particular cases for which the corresponding model with random DM was investigated

in detail, see § 5.5.

defined function of b0/E. It can be concluded that the DM soliton corresponding
to the larger value of t0 is stable, while that corresponding to smaller t0 is
unstable, The border between the stable and unstable solitons corresponds to
b0/E = (b0/E)max (see eq. 176), and it is located at t

2
0 =
(
t20
)
min

≈ 0.148 [i.e., all
stable and unstable solitons have, respectively, t20 >

(
t20
)
min
and t20 <

(
t20
)
min
].

The results concerning the stability of these two solitons were reproduced in a
mathematically rigorous form by Pelinovsky [2000].
Translating t20 into the standard DM-strength parameter S according to

eq. (171), one concludes that VA predicts the following:
• stable DM solitons at anomalous PAD if S < Scr ≈ 4.79;
• stable DM solitons at zero PAD if S = Scr ≈ 4.79;
• stable DM solitons at normal PAD if 4.79 < S < Smax ≈ 9.75;
• no stable DM soliton if S > Smax ≈ 9.75.
The normalized power of the DM soliton, which is P ≡ 4 · 1.12P0 (the

factor 1.12 is the ratio of the FWHM widths for the sech-shaped and Gaussian
pulses) vs. the DM strength at different fixed values of PAD, b0, is shown,
as predicted by eq. (175), in fig. 23. A counterpart of the same dependence,
obtained by Berntson, Doran, Forysiak and Nijhof [1998] from direct simulations
of eq. (164), is displayed in fig. 24. In fig. 23 the curves are shown only in the
region S < 9.75, where the solitons are expected to be stable. The curves in
fig. 24 corresponding to normal PAD ( b0 > 0) terminate at points where the
DM soliton becomes unstable.
Comparison of figs. 23 and 24 shows that VA yields acceptable results for
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Fig. 24. Counterpart of fig. 23, obtained by direct numerical simulations of eq. (164). Asterisks mark
particular cases for which the corresponding model with random DM was investigated in detail.

relatively small values of the soliton power, where the above approximation,
which treated the nonlinearity as a weak perturbation, should be relevant. In
particular, the VA-predicted value Scr ≈ 4.79 is different from, but reasonably
close to, the critical DM strength Scr ≈ 4 which was found from direct
simulations for the small-power case. With increasing power, the numerically
found Scr grows. It is also noteworthy that the value Smax ≈ 9.75, predicted by
VA as the stability limit for DM solitons, is indeed close to the result of direct
simulations for small powers, see fig. 24.

5.5. Random dispersion management

Existing terrestrial optical telecommunication webs are patchwork systems,
which include links with very different lengths (Agrawal [1997]). This circum-
stance of practical importance suggests to consider random DM. A short account
of recent results obtained for random DM by Malomed and Berntson [2002] by
means of VA is given here, the most salient feature being a sharp difference
between robust and unstable soliton propagation regimes. A random-DM model
of a different type was considered by Abdullaev and Baizakov [2000] (see
also work by Abdullaev, Bronski and Papanicolaou [1999]), where the local
values of the dispersion, rather than the fiber-segment lengths, were distributed
randomly. In these works, the above-mentioned drastic difference between stable
and unstable regimes of soliton transmission was not reported.
The basic equation and normalizations are the same as in the previous section,

i.e., they are given by eqs. (164) and (167). In the case of random DM, the
normalizations must be applied to mean values of the random lengths. Limiting

Final proof, Progress in Optics 43, p. 151



152 Variational methods in nonlinear fiber optics and related fields [2, § 5

the consideration to the case when the mean lengths of the segments with
anomalous and normal dispersion are equal, L1 = L2, eqs. (167) yield L1,2 = 1

2
and |D1,2| = 2. To comply with the former condition, one may assume that the
random lengths L1,2 are distributed uniformly in the interval 0.1 < L < 0.9. The
minimum length 0.1 is introduced because, in reality, the length can neither be
very large (say, larger than 200 km) nor be very small (shorter than 20 km).
The same ansatz (168) and variational equations (172 and 173) may be

used with the randomly distributed lengths. As explained above, the change
of the soliton’s parameters, t0 → t0 + dt0, D0 → D0 + dD0, within one
DM cell is small. Therefore, the evolution of the pulse passing many cells is

approximated by smoothed differential equations, dt0/dz = dt0/
(
L(n)1 + L(n)2

)
and dD0/dz = dD0/

(
L(n)1 + L(n)2

)
(here n is the cell’s number), which take the

following form,

dt0
dz

=

√
2Et40

8 (L2 + L1)

[
1√

t40 + 4D
2
0

+
1√

t40 + 4(D0 + 2L2 − 2L1)2

−
2√

t40 + 4(D0 + 2L2)2

]
,

(177)

dD0
dz

= − b0

+

√
2Et30

8 (L2 + L1)

[
2D0√
t40 + 4D

2
0

+
2(D0 + 2L2 − 2L1)√
t40 + 4(D0 + 2L2 − 2L1)2

−
4(D0 + 2L2)√
t40 + 4(D0 + 2L2)2

− 1
2 ln

(
2D0 +

√
t40 + 4D

2
0

)

− 1
2 ln

(
2(D0 + 2L2 − 2L1) +

√
t40 + 4(D0 + 2L2 − 2L1)2

)
+ ln

(
2(D0 + 2L2) +

√
t40 + 4(D0 + 2L2)2

)]
.

(178)

The most essential characteristic of the pulse propagation at given values of b0
and E is the cell-average pulse’s width,

W ≡ 1
L

∫
cell
W (z) dz. (179)

Simulations of eqs. (177) and (178) reveal that there are two drastically
different dynamical regimes. If the soliton’s energy is sufficiently small (hence
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Fig. 25. Evolution of the soliton’s cell-average pulse width (normalized to its initial value) in the
random-dispersion-management model with zero PAD. The mean values (solid curve) and standard
deviations (dashed curves) are produced by averaging over 200 different realizations of the random-
length set. The propagation distance is given in units of the average DM cell length. The bottom
and top plots correspond to the DM solitons with low energy E = 0.1 and high energy E = 3.6,

respectively.

the approximation outlined in the previous section is relevant) and PAD is
anomalous or zero, i.e., b0 � 0 (especially, if b0 = 0), the pulse performs random
vibrations but remains, in fact, fairly stable over long propagation distances.
When the energy is larger, as well as when PAD is normal, b0 > 0, the pulse
demonstrates fast degradation.
Typical examples of the propagation are displayed in fig. 25 for the zero-

PAD case, which is the best in terms of the soliton stability. Simulations of
eqs. (177) and (178) have been performed with 200 different realizations of the
random-length set, chosen so that L(n)1 ≡ L(n)2 (equal lenghts of the anomalous-
and normal-dispersion segments inside each DM cell). Figure 25 shows the
evolution of

〈
W (z)

〉
, i.e., the mean value of the width (179) averaged over the

200 random realizations, along with the corresponding normal deviations from
the mean value. The figure demonstrates that some systematic slow evolution
takes place on top of the random vibrations, which are eliminated by averaging
over 200 realizations. Systematic degradation (broadening) of the soliton takes
place too, but it is extremely slow if the energy is small. In the case shown
in the bottom part of fig. 25, the pulse survives with very little degradation
in propagation over more than 1000 average cell lengths (in fact, as long as
the simulations could be run). It is not difficult to understand this: in the limit
of zero power, i.e., in the linear random-DM model, an exact solution for the
pulse is available in essentially the same form as given above for periodic DM,
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see eq. (168). If PAD is exactly zero, this exact solution predicts no systematic
broadening of the pulse.
If the soliton’s energy is larger, further simulations of eqs. (177) and (178)

show that, after having passed a very large distance, the sluggish spreading
out of the soliton suddenly ends in a blowup (complete decay into radiation).
This seems to be qualitatively similar to what was predicted by VA for periodic
sinusoidal modulation of the dispersion, see § 5.3.1. and fig. 17c: a long span
of chaotic but nevertheless quasi-stable vibrations is suddenly ended by rapid
irreversible decay.
In fact, the case b0 = 0 is a point of sharp optimum: at any finite

anomalous PAD, i.e., b0 < 0, the degradation of the pulses is essentially faster,
especially for those with larger energy, and at any small normal value of PAD,
b0 > 0, very rapid decay always takes place, virtually at all values of energy.
Malomed and Berntson [2002] have also performed a comparison of the

results predicted by VA with direct simulations of the same random-DM model.
The direct numerical results prove to be quite similar to what was predicted
by VA. In particular, the most stable propagation is again observed at zero PAD,
the soliton’s broadening is faster at nonzero anomalous PAD, and all solitons de-
cay very quickly at nonzero normal PAD. The soliton’s stability in the direct sim-
ulations drastically deteriorates with increasing energy, as also predicted by VA.
Detailed comparison shows that, surprisingly, the direct simulations yield

somewhat better results for the soliton’s stability than VA: the actual broadening
rate may be ~20% smaller than that predicted by VA. The slow long-scale
oscillations, clearly seen in fig. 25, are less pronounced in the direct simulations.
The sudden decay into radiation, predicted by VA after very long propagation,
does not take place in the direct simulations; instead, the soliton eventually splits
into two smaller ones, quite similar to what is observed in direct simulations of
the model with periodically modulated dispersion, see fig. 19.

5.6. Interactions between dispersion-managed solitons

5.6.1. Collisions between solitons belonging to different channels in
wavelength-division-multiplexed systems

Wavelength-division multiplexing (WDM), i.e., creation of a large number of
channels in the same fiber, carried by different wavelengths, is the most important
direction in the development of optical telecommunications. In soliton-based
systems, the most serious problem related to WDM is crosstalk due to collisions
of pulses belonging to different channels. Collisions are inevitable, as the
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inherent dispersion of the fiber gives rise to different group velocities of the
carrier waves in different channels.
Very promising results are produced by a combination of WDM and DM,

especially with respect to the suppression of collision-induced effects, as
shown in simulations reported by Niculae, Forysiak, Gloag, Nijhof and Doran
[1998]. Here, an account of VA-based analysis of collisions in the combined
WDM/DM system will be given, following a work by Kaup, Malomed and Yang
[1999].
The simplest two-channel system is described by the following equations

(cf. eq. 164):

i(uz + cut ) + 1
2D(z) utt +

[
1
2Duutt + g

(
|v|2 + 2 |u|2

)
u
]
= 0, (180)

ivz + 1
2D(z) vtt +

[
1
2Dvvtt + g

(
|u|2 + 2 |v|2

)
v
]
= 0, (181)

where c is the inverse group-velocity difference between the channels, D(z) is the
main part of the dispersion (with zero average), which may be assumed the same
in both channels, Du,v are the values of PAD in the two channels, which are
different in general, and the nonlinear terms represent, as usual, the self-phase
modulation (SPM) and cross-phase modulation (XPM) effects.
The analysis uses the same ansatz (168) for the solitons as above. However,

in order to describe the dynamics of the interacting pulses, the ansatz may be
taken in a more general form, which is obtained from eq. (168) by the Galilean
boost,

u(z, t) = u0(z, t − T (z)) exp(−iwt + iy(z)), (182)

where w is an arbitrary frequency shift, and the corresponding position shift is
generated by the following equation:

dT
dz
= −w

(
D(z) + Du

)
. (183)

In the absence of interaction, the parameters of solitons in both channels are
selected by the conditions (175). Since these conditions were obtained treating
the SPM nonlinearity as a small perturbation, the XPM-induced interaction
between solitons may also be considered as a perturbation in the Lagrangian of
eqs. (180) and (181) (the Lagrangian representation of XPM-coupled equations
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was considered in § 4). This approach makes it possible to derive the following
evolution equation for the soliton’s frequency shift in the presence of XPM:

dw
dz

=
23/2Pvt40 cz[
t40 + 4D2(z)

]3/2 exp
(
−

c2t20 z
2[

t40 + 4D2(z)
]) , (184)

where Pv is the peak power of the pulse in the v-channel. In the same
approximation, the evolution of the position is governed by the unperturbed
equation (183). Equation (184) implies that the centers of the two solitons
coincide at z = 0.
In a two-channel model without DM, a dynamical equation similar to (184)

was derived by Ablowitz, Biondini, Chakravarty and Horne [1998]). However,
there is a principal difference between the collision in the system with DM and
that in the system with constant dispersion: as the coefficient D(z) in eq. (183)
periodically changes sign, it is easy to see that, in the strong-DM regime,
colliding pulses pass through each other many times before separating.
It is necessary to distinguish between complete and incomplete collisions. In

the former (generic) case, the solitons are far separated before the collision, while
in the latter case, which takes place when the collision occurs close to the input
point, the solitons overlap strongly at the beginning of the interaction. In either
case, the most important result of the collision is a net shift of the soliton’s
frequency dw, which can be calculated as

dw =
∫ +∞

z0

dw
dz
dz, (185)

where dw/dz should be taken from eq. (184). The lower limit of the integration in
expression (185) is finite in the case of the incomplete collision, while a complete
collision corresponds to z0 = −∞. The net frequency shift is very detrimental,
as, through the dispersion, it gives rise to a change of the soliton’s velocity. If the
soliton picks up a “wrong” velocity, information carried by the soliton stream
in the fiber-optic telecommunication link may be lost completely.
An estimate of physical parameters for dense WDM arrangements, with a

wavelength separation between channels of dl < 1 nm (this is the case of
paramount practical interest) shows that the group-velocity mismatch c may
be regarded as a small parameter, hence the function cz varies slowly in
comparison with the rapidly oscillating accumulated dispersion D(z). In this case,
the integral (185) and similar integrals can be calculated in a fully analytical
form, as shown by Kaup, Malomed and Yang [1999]. In particular, the net
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frequency shift is zero for the complete collision, which shows the ability of
DM to suppress collision-induced effects. In fact, the zero net shift is a result
of the multiple character of the collision (see above): each elementary collision
may generate a finite frequency shift, but they sum up to zero.
Once the net frequency shift is zero, the collision is characterized by a net

position shift, which is a detrimental effect too, but less dangerous than the
frequency shift. The position shift can be found from eq. (183):

dT ≡
∫ +∞

−∞

dT
dz
dz = ûD

∫ +∞

−∞
z
dw
dz
dz +

∫ +∞

−∞
D(z)

dw
dz
dz, (186)

where integration by parts was performed. Then, substituting the expres-
sion (184) for dw/dz, one can perform the integrations analytically, to obtain
a very simple final result (for definiteness, it is written for the soliton in the
u-subsystem):

dTu =
√
2p DuPv

t0
c2
. (187)

Note that this result contains a product of two small parameters, namely, PAD Du
and the power Pv (the latter is small as it measures the nonlinearity in the system,
and it was assumed from the very beginning that the nonlinearity is a small
perturbation).
The net frequency shift generated by the incomplete collision can be found

similarly. In this case, the worst (largest) result is obtained for the configuration
with the centers of the two solitons coinciding at the launching point z = 0:

(dw)max =
√
2
Pv
cS
ln
(
S +

√
1 + S2

)
, (188)

where S is the DM strength defined by eq. (171).
These analytical results obtained by means of VA were compared with

numerical simulations. First of all, simulations show that the net frequency shift
induced by complete collisions is very small indeed (much smaller than in the
case of incomplete collisions at the same values of the parameters). As for the
position shift in the case of complete collision, the analytical prediction (187) is
compared to numerical results in fig. 26, showing reasonable agreement.
In the case of incomplete collisions, simulations yield a nonzero frequency

shift, which was compared to the analytical prediction (188) by Kaup, Malomed
and Yang [1999]. In this case, there is acceptable agreement again. However, in
contrast to the case of complete collision (fig. 26), the difference between the
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Fig. 26. Analytically and numerically found position shift of the soliton induced by complete collision
in the two-channel model described by eqs. (180) and (181) with L1 = 0.4, L2 = 0.6, D1 =

5
2 ,

D2 = −
5
3 , c = 0.3, and peak powers of the colliding pulses Pu = Pv = 0.1.

analytically predicted and numerically found results (this time, the frequency
shifts) decreases with increasing DM strength S.

5.6.2. Interactions between solitons inside one channel

As demonstrated in the previous subsection, DM makes it possible to suppress
the crosstalk between solitons in different channels of the WDM system.
Thus, the most serious remaining limiting factor in the strong-DM regime
is the interaction of pulses in the same channel, as demonstrated by Yu,
Golovchenko, Pilipetskii and Menyuk [1997]. In fact, in this regime the
intrachannel interactions turn out to be stronger than in the absence of DM,
which suggests that it may be optimal to use a moderate-DM regime rather than
strong DM.
Analysis of the interactions inside one channel can be effectively performed

by means of VA, although a particular variational technique which yields good
agreement with direct simulations turns out to be rather cumbersome. Below,
main results for the intrachannel interactions between solitons are presented,
following the paper by Wald, Malomed and Lederer [1999].
Earlier, VA based on the Gaussian ansatz was applied to this problem by

Georges [1998], Matsumoto [1998] and Malomed [1998a,b] (see also a related
paper by Kumar, Wald, Lederer and Hasegawa [1998]). It was shown that this
simple version of VA correctly describes the interactions in the strong-DM
regime, despite the fact that the Gaussian ansatz approximates only the cores
of the DM solitons adequately, but not their “tails”, whose genuine form is
exponential rather than Gaussian (Ablowitz and Biondini [1998]). The incorrect
approximation for the tails is not significant in the case of strong-DM, as the

Final proof, Progress in Optics 43, p. 158



2, § 5] Spatially nonuniform fibers and dispersion management 159

huge periodic spreadings of the pulses lead to strong overlapping between them,
involving their cores rather than tails. In the moderate-DM case, however, the
tails play a dominant role in the interactions (Malomed [1998a]), and the simple
Gaussian ansatz fails in this case.
To describe the interaction of two separated pulses, one may substitute

u(z, t) = u1(z, t) + u2(z, t) into eq. (164), which describes the one-channel
DM model, and split it, following Karpman and Solov’ev [1981], into separate
NLS equations for the two pulses, treating the interaction between them as a
small perturbation,

i
ðun
ðz
− 1
2b(z)

ð2un
ðt2

+ |un|2un = −u2nu∗
3−n + 2|un|2u3−n, n = 1, 2. (189)

These equations can be derived from the Lagrangian density L = L1 +L2, where
(cf. eq. 15)

Ln =
[
i
2

(
u∗
n
ðun
ðz

− un
ðu∗
n

ðz

)
+
1
2

(
b
∣∣∣∣ðunðt

∣∣∣∣2 + |un|4
)]

+ |un|2
(
unu

∗
3−n + u

∗
nu3−n

)
,

(190)

the last term accounting for the interaction. An ansatz which proves to be
adequate for the description of the interactions between solitons is

un(z, t) = An(z) f (tn) exp
[
iFn(z) − iún(z)tn + ibn(z) f −1

ð2f

ðt2n

]
, (191)

f (tn) ≡ exp

[
−
√
an(z) + t2n

]
, tn ≡ q(t − Tn(z)), (192)

where real variational parameters are A1,2, F1,2, ú1,2, b1,2, a1,2 and T1,2, while
q is an auxiliary constant that is not to be varied, see below. This ansatz combines
a Gaussian-like core and exponentially decaying tails, as f (tn) ≈ exp(−|tn|)
as |tn| → ∞. The shape of the pulses is controlled by the parameters an(z):
the larger an, the more Gaussian-like the pulse is.
Calculating the full Lagrangian L =

∫ +∞
−∞ (L1 + L2) dt with the ansatz (191)–
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(192) in analytical form is not possible, therefore the resulting variational
equations for the parameters of the ansatz are cast into the following form:

dan
dz

= bq2bnQ1(an),
dTn
dz

= bqún,

dbn
dz

= 1
2

[
−bq2 + bq2b2nQ2(an) + EnQ3(an)

]
,

dún
dz

= −
2q
En
A3nA3−n

×
∫ +∞

−∞
f 3(tn) f (t3−n)

[
3tn cosD÷√
an + t2n

+ (−1)nbn
ð

ðtn

(
1
f (tn)

ð2f

ðt2n

)
sin(D÷)

]
dt .

(193)
Here, En ≡ A2n

∫ +∞
−∞ f 2(t , an) dt = 2A2n

√
aK1(2

√
a), with K1 the modified Bessel

function, are the energies of the two pulses, which are conserved separately in
the approximation used here. Further,

D÷ ≡ ú1t1 − ú2t2 +
b2
f (t2)

ð2f

ðt22
−
b1
f (t1)

ð2f

ðt21
,

Q1(a) ≡ I0I1
D
, Q2(a) ≡ I1I ′0 − I0I

′
1

D
, Q3(a) ≡ 2I2I ′0 − I0I

′
2

D
, (194)

I1(a) ≡
∫ +∞

−∞

(
1
f

ð3f

ðt3
−
1
f

ðf

ðt
ð2f

ðt2

)2
dt , I2(a) ≡

∫ +∞

−∞
f 4(t) dt ,

I3(a) ≡
∫ +∞

−∞

(
ðf

ðt

)2
dt ,

(195)

I0(a) ≡ 2
√
aK1(2

√
a), D ≡ I0I

′
3 − I3I

′
0.

The evolution equations (193) were solved numerically, and the results were
compared to direct simulations of the interaction between two solitons in
eq. (164) with DM taken in the simplest symmetric form (cf. eq. 166),

b(z) =


b1, 0 � z � 1

2 z1,

b2, 1
2 z1 < z � z2 +

1
2 z1,

b1, z2 + 1
2 z1 < z � z1 + z2,

(196)

and the launch point in the middle of one of the segments. In the simulations,
the lengths of the DM segments in eq. (196) were z1 = z2 = 0.1, and the initial

FWHM width was fixed to be 2 ln
(
1 +

√
2
)

≈ 1.763, i.e., the same as that of

the pulse A sech t . To keep this fixed value of the width for an arbitrary initial
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value a1,2(0) ≡ a0 of the parameter a(z) in the ansatz (191), (192), the constant q
in eq. (191) was chosen so that

q2 =
ln 2
1.7632

(ln 2 + 4
√
a0) ≈ 0.155 + 0.892

√
a0 (197)

(recall that q was defined as a nonvariational auxiliary parameter). Note that, in
this notation, the expression for the DM strength is

S ≡ b1z1 − b2z2)
1.7632

(198)

instead of eq. (171).
First, eqs. (193) were applied to an isolated pulse. The objective was, solving

numerically the first two equations of the system (193), to find the initial
values a0 and h0 ≡ A(0) exp(−

√
a0) that provide for a stationary DM pulse,

i.e., strictly periodic evolution of a(z) and b(z) [in other words, an analog of
the conditions (175) obtained for the simple Gaussian ansatz (168)]. Because of
the presence of two unknown initial values [with q taken as per eq. (197)], the
simulations generate a whole set of values (a0, h0) that give rise to a stationary
pulse (in fact, the h0 thus found is nearly constant, while a0 may vary within
broad limits). This implies that an extra optimization condition may be imposed,
in order to select a unique set of values that gives rise to the most accurate
approximation for the DM soliton.
The extra condition was the demand that not only the transmission of the

isolated pulse, but also interactions between identical pulses must be correctly
described by the full system of variational equations (193). To this end, the
full system was solved numerically, and the collision distance predicted by this
solution, i.e., the value of the propagation distance z at which a collision of two
solitons has to take place, was compared to the actual collision distance obtained
from direct numerical simulations of eq. (164). This procedure, repeated at many
different values of parameters, has yielded an empirical result giving the value
of a0, optimized against the description of the interactions, as a function of the
DM strength S (see eq. 198),

a0(S) = 1.2 + 5.8S
2, (199)

in the range S � 1.5 (i.e., for moderate DM).
Detailed results reported by Wald, Malomed and Lederer [1999] show that the

ansatz based on eqs. (191) and (192) and optimized as outlined above, although
being somewhat cumbersome, generates a shape for an isolated DM soliton
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Fig. 27. Positions of two interacting identical solitons in one dispersion-managed channel vs.
the propagation distance z. Curves: prediction of the variational approximation based on the
ansatz (191)−(192) with parameters optimized as described in the text; symbols: direct numerical

simulations for various values of the DM strength S.

which is extremely close to the shape found numerically, and simultaneously
provides for a very accurate description of the interaction, as illustrated by
fig. 27. The figure compares the evolution of the temporal positions of two
interacting identical DM solitons, as predicted by the present version of VA and
as obtained from direct simulations of eq. (164).

§ 6. Solitons in dual-core optical fibers

6.1. Solitons in a basic model of the dual-core fiber

A dual-core fiber (DCF), alias directional coupler, is a system of two parallel
identical or different fibers with a gap between them on the order of the
wavelength, so that light can linearly couple from one core into the other.
DCF is a basis for design of optical switches (Trillo, Wabnitz, Wright and
Stegeman [1988], Friberg, Weiner, Silberberg, Sfez and Smith [1988]). It can
also be used for efficient compression of solitons by passing them into a fiber
with a smaller value of the dispersion coefficient: as demonstrated by Hatami-
Hanza, Chu, Malomed and Peng [1997], the highest-quality compression is
achieved when two fibers with different dispersion coefficients are connected
not by splicing, but rather when they form an asymmetric coupler.
Nonlinear DCFs are a promising medium for the observation of new types of

optical solitons, for the description of which VA is a natural technique, as it was
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first shown by Paré and Fłorjańczyk [1990] and Maimistov [1991] (see also an
independent work by Chu, Malomed and Peng [1993]). The applicability of VA
to the DCF model and its limitations were discussed by Ankiewicz, Akhmediev,
Peng and Chu [1993]; however, the version of VA considered in that work was
not flexible enough. Results obtained by means of VA for solitons in DCF are
presented in this section, following the work by Malomed, Skinner, Chu and
Peng [1996].
DCF is described by a system of linearly coupled NLS equations,

iuz + 1
2utt + |u|2u + Kv = 0, (200)

ivz + 1
2vtt + |v|2v + Ku = 0, (201)

where K is the coupling constant accounting for the light exchange between the
two cores. These equations admit the usual variational representation, the linear
coupling being accounted for by additional terms in the Lagrangian density,
DL = K (U ∗V + UV ∗). An ansatz for a soliton with a component in each core
can be taken as

u = A cos q sech
(t
a

)
exp
[
i(÷ + y) + ibt2

]
, (202)

v = A sin q sech
(t
a

)
exp
[
i(÷ − y) + ibt2

]
. (203)

New parameters, in comparison with the sech ansatz (13) for the single-
component soliton, are the angle q which measures the distribution of energy
between the two cores, and the relative phase y between them.
Note that the ansatz (202)−(203) assumes that the centers of the two

components of the soliton are stuck together. This implies that the linear coupling
between the two cores is strong, which corresponds to a real physical situation.
However, one may also consider a case when the linear coupling is a small
perturbation, so that a two-component soliton is a weakly bound state of two
individual NLS solitons belonging to the two cores, as it was done by Abdullaev,
Abrarov and Darmanyan [1989] and Kivshar and Malomed [1989b], using
straightforward perturbation theory (see also a paper by Cohen [1995], where
the Hamiltonian formalism was used to analyze the stability of bound states of
solitons in weakly coupled fibers).
Switching of a soliton between the two cores was considered, on the basis of

a full system of variational equations for the ansatz (202)−(203), by Uzunov,
Muschall, Gölles, Kivshar, Malomed and Lederer [1995] (independently, a
less sophisticated version of VA was used by Doty, Haus, Oh and Fork
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[1995] to analyze interactions of solitons in DCF; accurate numerical results
for the interaction were reported by Peng, Malomed and Chu [1998]). The
corresponding ODEs were solved numerically, and the results were compared
against direct numerical solutions of eqs. (200) and (201), showing very good
accordance over a broad parametric region. It was demonstrated by Smyth and
Worthy [1997] that the description of the switching dynamics in DCF can be
improved further if the radiation component of the wave field is incorporated
into the ansatz, similarly to what was done by Kath and Smyth [1995] in the
model of the single-core fiber.
Here, consideration is focused on static solitons, which can be found from

the variational equations generated by the ansatz (202)−(203), in which all
parameters except the phase ÷ are assumed constant:

sin(2q) sin(2y) = 0, (204)
E

3a
cos(2q) − K cot(2q) cos(2y) = 0, (205)

1
a
= E
[
1 − 1

2 sin
2(2q)

]
, (206)

d÷
dz
=
1
6a2

+
2E
3a

[
1 − 1

2 sin
2(2q)

]
+ ú sin(2q) cos(2y),

where E is the net energy of the soliton, E ≡ 1
2

∫ +∞
−∞
(|U |2 + |V |2) dt = A2a.

Equation (204) requires either sin(2q) = 0 or sin(2y) = 0. According to
the ansatz (202)−(203), the former solution implies that all the energy resides
in a single core, which contradicts eqs. (200) and (201), hence this solution
is extraneous. The latter solution, sin(2y) = 0, implies that cos(2y) = ±1.
According to the numerical findings of Soto-Crespo and Akhmediev [1993], the
solutions corresponding to cos(2y) = −1, i.e., with a phase shift p between
the two components, are almost everywhere unstable. Therefore, only the case
cos(2y) = +1, corresponding to solitons with in-phase components, is considered
below. Then, the width a is eliminated by means of eq. (206), and the remaining
equation (206) for the energy-distribution angle q takes the form

cos(2q)
{
E2

3K
sin(2q)

[
1 − 1

2 sin
2(2q)

]
− 1

}
= 0. (207)

A simple analysis reveals that, in the interval 0 < E2 < E21 , where

E21 =
9
4

√
6K ≈ 5.511K , (208)

the only solution to eq. (207) is the symmetric one, with q = 1
4p , which implies

equal energies in both components according to eqs. (202) and (203). When
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Fig. 28. Bifurcations between symmetric and asymmetric solitons in a dual-core nonlinear optical
fiber. The solid and dashed branches correspond to stable and unstable solitons, respectively, and

the thick dots indicate the bifurcation points.

the soliton’s energy attains the value E1, asymmetric solutions emerge with
cos(2q) = ±1/√3. When E2 attains a slightly larger value,

E22 = 6K , (209)

a backward (subcritical) bifurcation occurs, which makes the symmetric solution
with q = 1

4p unstable.
The corresponding bifurcation diagram is displayed in fig. 28. Note that

the quantity cos(2q), which is used as the vertical coordinate in the di-
agram, measures the asymmetry of the soliton because, as follows from
eqs. (202) and (203),

cos(2q) ≡ E(1) − E(2)

E(1) + E(2)
, (210)

where E( j) is the energy in the jth core. Even without detailed stability analysis,
one can easily distinguish between stable and unstable branches in the diagram,
using elementary theorems of bifurcation theory (see a book by Iooss and Joseph
[1980]).
Thus, VA predicts backward bifurcation at the soliton energy E2 =

√
6K ≈

2.45
√
K , whereas the known exact value is 4

√
1
3K ≈ 2.31

√
K (Wright, Stege-

man and Wabnitz [1989]), which illustrates the accuracy of VA. The bifurcation
diagram produced by VA agrees with the numerical results (Akhmediev and
Ankiewicz [1993], Soto-Crespo and Akhmediev [1993]) in showing that the
region of bistability extends over a very narrow range of energies.
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6.2. Fibers with a variable separation between the cores

An interesting dynamical generalization of the static problem outlined above
is the consideration of bifurcations of solitons in a model of DCF with
a periodically modulated coupling constant, i.e., K = K0 + K1 cos(kz) in
eqs. (200) and (201). The periodic modulation may uncover hidden intrinsic
resonances in the two-component DCF soliton, as was demonstrated, also by
means of VA, in the work of Chu, Malomed, Peng and Skinner [1994]. A final
result of the analysis is the prediction of a bifurcation from a two-component
soliton whose energy oscillates symmetrically between the two cores to a pair of
mutually symmetric solitons with broken symmetry of the oscillations (fig. 29).
A dual-core configuration of practical importance is a fused coupler, in which

two far-separated fibers are bent so that they converge, reach a minimum sepa-
ration at which light can couple between them, and then diverge again. The ac-
cordingly modulated coupling coefficient is, for instance, K(z) = K0 sech(úz). In
this case, a natural dynamical problem is to consider how the energy of a soliton
launched into one core is split between the cores after the passage of the coupling
region. The variational technique can be applied to this problem in a straightfor-
ward way and, as demonstrated by Skinner, Peng, Malomed and Chu [1995], it
produces results which are very close to those obtained from direct simulations of
the NLS equations coupled by the linear terms with the variable coefficient K(z).
Note that the limiting case of the fused coupler is when the coupling may be

assumed to be concentrated at a single point, K(z) = K0d(z). In this limit, the

Fig. 29. Schematic representation of the symmetry-breaking bifurcation of a soliton whose energy
oscillates between the two cores in a dual-core fiber with the coupling constant periodically
modulated along the propagation distance. Here, q1 ≡ q − 1

4p is the asymmetry parameter (see
eqs. 202 and 203), and the rest of the notation is as in the paper by Chu, Malomed, Peng and
Skinner [1994]. The solid and dashed lines represent two asymmetric solitons existing past the
bifurcation point; the unstable symmetric solution remaining beyond the bifurcation (cf. fig. 28) is

not shown.
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problem of the soliton passage though the fused coupler admits an exact solution,
as shown by Chu, Kivshar, Malomed, Peng and Quiroga-Teixeiro [1995].
Another source of z-dependence of the coupling constant K in the DCF model

may be small fluctuations of the separation between the cores, as K is very
sensitive to the exact value of the separation. However, it was demonstrated by
Mostofi, Malomed and Chu [1998] that the solitons in DCF are not critically
sensitive to fluctuations of K , except for an extremely narrow vicinity of the
bifurcation point.

6.3. Gap solitons in asymmetric dual-core fibers

Asymmetric DCFs, consisting of two different cores, can be fabricated easily, and
the properties of solitons in these DFCs may be quite different from those in the
symmetric DCF. A general model for an asymmetric DCF is (cf. eqs. 200, 201)

iuz + qu + 1
2utt + |u|2u + v = 0, (211)

ivz − d · (qv + 1
2vtt
)
+ |v|2v + u = 0, (212)

where the real parameter d accounts for the difference in dispersion coefficients
in the cores, and the real q defines the phase-velocity mismatch between
them; possible group-velocity terms, ~ iut and ivt , can be eliminated from the
equations.
The influence of the asymmetry between the cores on soliton bifurcations

was considered in the above-mentioned paper by Malomed, Skinner, Chu and
Peng [1996], and in more detail by Kaup, Lakoba and Malomed [1997]. In the
latter work, an analytical approach based on VA showed good agreement with
direct numerical results. A noteworthy feature of bifurcations in the asymmetric
model is the possibility of hysteresis in a broad region (in the symmetric
model, hysteresis is only possible in the narrow bistable region between the two
bifurcation points, see fig. 28).
The most interesting version of the asymmetric model is that with d > 0 in

eq. (212), i.e., with opposite signs of the dispersion in the two cores, which
was studied by means of VA and direct numerical methods by Kaup and
Malomed [1998]. To understand the fundamental properties of solitons in this
model, it is first of all necessary to analyze its linear spectrum. Substituting
u, v ~ exp (ikz − iwt) into the linearized equations (211) and (212) yields the
dispersion relation

k = 1
4 (d − 1)

(
w2 − 2q

)±√ 1
16 (d + 1)

2 (w2 − 2q)2 + 1. (213)

Solitons may exist at values of the propagation constant k that belong to a gap
in the spectrum (213), i.e., where both values of w2 corresponding to a given k
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Fig. 30. Typical dispersion curves given by eq. (213) for a dual-core fiber with opposite dispersions
in the cores, described by eqs. (211) and (212) with d = 1: (a) q = −1; (b) q = +1.

are nonphysical (negative or complex). Moreover, if these values are complex,
soliton tails decay with oscillations, rather than monotonically. In particular,
it follows from eq. (213) that, in the subgap 0 � k2 < 4d/ (1 + d)2, only
solitons with oscillating decaying tails may exist. The existence of this type
of soliton is an essential result (similar solitons were also found by Malomed
[1995] in a model with equal dispersions in both cores, d = −1, and a group-
velocity mismatch between them, which is a special case not comprised in
eqs. 211 and 212; as shown in that work, the solitons may form bound states,
interacting through the oscillating tails). In the case of opposite dispersions in
the two cores (d > 0), the spectrum always contains a finite gap; typical results
for negative and positive values of the mismatch q are shown in fig. 30.
Once the gap has been found, stationary gap solitons residing in it are sought

for as u(z, t) = U (t) exp(ikz), v(z, t) = V (t) exp(ikz) with real U and V that
obey ODEs

(q − k)U + 1
2U

′′ +U 3 +V = 0, −(dq + k)V − 1
2dV

′′ +V 3 +U = 0,
(214)
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the prime standing for d/dt . Approximate solutions to eqs. (214) were
constructed by means of VA, using the Gaussian ansatz

U = A exp

(
−
t2

2a2

)
, V = B exp

(
−
t2

2b2

)
. (215)

The amplitudes A and B can be eliminated from the resulting system of
variational algebraic equations, leading to the following equations for the
widths a and b:[

3 − 4(k − q) a2
] [
3d + 4(k + dq) b2

]
= 32(ab)3

(
b2 − 3a2

) (
3b2 − a2

) (
a2 + b2

)−3
,

(216)

[
3 − 4(k − q) a2

] (
3a2 − b2

)2[
3d + 4(k + dq) b2

] (
3b2 − a2

)2
=
a3
[
d · (3a2 + b2) + 4(k + dq) b2 (b2 − a2)]
b3
[(
3b2 + a2

)
+ 4(k − q) a2

(
b2 − a2

)] .

(217)

Equations (216) and (217) were solved numerically to find a and b as functions
of the control parameters, d and q, and the propagation constant k .
To present the results in a physically meaningful form, one should define, as

usual, the energies of the two components of the soliton,

Eu ≡
∫ +∞

−∞
|U (t)|2 dt = √

pA2a, Ev ≡
∫ +∞

−∞
|V (t)|2 dt = √

pB2b,

(218)
and the net energy E ≡ Eu + Ev. The dependence E(k) is particularly
important as, according to the condition put forward by Vakhitov and Kolokolov
[1973] (VK), a necessary condition for the stability of the soliton is dk/dE > 0.
Detailed results presented in the above-mentioned paper by Kaup and Malomed
[1998] show that the gap solitons exist indeed in some part of the available
gap, and, in most cases, they are stable according to the VK criterion;
however, another part of the gap remains empty (there are intervals of
the propagation constant k inside the gap, in which no soliton can be
found).
A noteworthy property of the gap solitons is that (slightly) more than

half of their net energy always resides in the normal-dispersion component v
(i.e., Ev/E > 1

2 , see eq. 218), despite the obvious fact that the normal-dispersion
core cannot, by itself, support any (bright) soliton. Accordingly, a typical soliton
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Fig. 31. Numerically found (solid lines) gap-soliton solution to eq. (214) with oscillating decaying
tails, in the case d = 1, q = 0.2, and E = 2.734, displayed along with its variational counterpart

(dashed curves).

predicted by VA (see fig. 31) has a narrower component with a larger amplitude
in the anomalous core, and a broader component with a smaller amplitude in the
normal one.
As can be seen from fig. 31, VA in general correctly approximates the soliton’s

core, but the simple ansatz (215) does not take into account the fact that, as
explained above, the soliton tails decay with oscillations. The contribution of
the tails is also amenable for a conspicuous difference of the energy share Ev/E
in the normal-dispersion core against the value predicted by VA for the same
net energy E: for example, in the case shown in fig. 31, the predicted value is
Ev/E = 0.585, while the numerically found one is Ev/E = 0.516 (but still larger
than 1

2 , as stressed above).

6.4. Two polarizations in the dual-core fiber

A physically interesting extended model of DCF, that was developed by Lakoba,
Kaup and Malomed [1997], takes into account the fact that light may have two
polarizations in each core. The model (a bimodal dual-core fiber) is based on a
system of four equations,

i(u1)z + 1
2 (u1)tt +

(|u1|2 + 2
3 |v1|2

)
u1 + u2 = 0,

i(v1)z + 1
2 (v1)tt +

(|v1|2 + 2
3 |u1|2

)
v1 + v2 = 0,

i(u2)z + 1
2 (u2)tt +

(|u2|2 + 2
3 |v2|2

)
u2 + u1 = 0,

i(v2)z + 1
2 (v2)tt +

(|v2|2 + 2
3 |u2|2

)
v2 + v1 = 0,

(219)

Final proof, Progress in Optics 43, p. 170



2, § 6] Solitons in dual-core optical fibers 171

where u and v refer to two linear polarizations (in the case of circular polariza-
tions, the XPM coefficient 23 should be replaced by 2), the subscripts 1 and 2
label the cores, and the coupling coefficient between them is K ≡ 1.
Four-component soliton solutions to eqs. (219) can be sought for by means of

VA based on the Gaussian ansatz,

u1,2(z, t) = A1,2 exp(ipz − 1
2a
2t2),

v1,2(z, t) = B1,2 exp(iqz − 1
2b
2t2),

(220)

with arbitrary real propagation constants p and q. In the general case, the
corresponding variational equations for the ansatz parameters An,Bn and a, b,
which are sought for as functions of p and q, are cumbersome. The equations
admit both symmetric solutions, with A21 = A

2
2 and B

2
1 = B

2
2, and asymmetric ones,

which are generated by symmetry-breaking bifurcations, similar to the model of
DCF with a single polarization considered above.
The existence regions of all the solutions in the (p, q) plane, obtained from

numerical solution of the algebraic variational equations, are displayed in
fig. 32 for the most important case when the signs of the amplitudes A1,2
and B1,2 inside each polarization coincide (other cases can also be considered,
but they yield unstable solutions only). Outside the hatched area, there are
only solutions with a single polarization (i.e., with either v1,2 = 0 or
u1,2 = 0), which amount to solutions considered in § 6.1; in particular, at the
dashed–dotted borders of the hatched area, asymmetric four-component solitons
(designated by the symbol AS1 in fig. 32) change over to the two-component
asymmetric solitons of the single-component DCF model. Symmetric solitons
exist inside the sector bordered by the solid lines. The bifurcation which gives
rise to the asymmetric solitons AS1 and destabilizes the symmetric solitons
occurs along the short dashed curve in the lower left part of the hatched
area.
There is an extra asymmetric soliton (denoted by AS2 in fig. 32) inside the

area confined by the dashed curve. Thus, the total number of soliton solutions
changes, as one crosses the bifurcation curves in fig. 32 from left to right,
from 1 to 3 to 5. However, the soliton AS2 is generated from the symmetric
soliton by an additional symmetry-breaking bifurcation which takes place after
the symmetric soliton has already been destabilized by the bifurcation which
gives rise to the asymmetric soliton AS1, therefore the soliton AS2 is always
unstable, while the primary asymmetric soliton AS1 is, most plausibly, always
stable. Further details about the stability of different solitons in this model can
be found in a paper by Lakoba and Kaup [1997].
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Fig. 32. Regions of existence of the symmetric and two types of asymmetric (stable, AS1,
and unstable, AS2) solitons in the plane (p, q) in the bimodal dual-core-fiber model (219). The
symbols u = 0, v = 0, and u = v refer to particular solutions with a single polarization and equal

polarizations.

§ 7. Bragg-grating (gap) solitons

7.1. Instability of gap solitons

In the systems described by the single or coupled NLS equations, the second-
derivative terms account for the intrinsic material dispersion of the fiber or
waveguide. Contrary to this, strong artificial dispersion can be induced by a
Bragg grating (BG), i.e., a periodic modulation of the refractive index written
along the fiber, the modulation period being half the wavelength of the light
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signal. The model for a nonlinear optical fiber equipped with BG is based on
the coupled equations (see the review by de Sterke and Sipe [1994])

iut + iux + (s |u|2 + |v|2) u + v = 0, (221)

ivt − ivx + (|u|2 + s |v|2) v + u = 0, (222)

where u and v are the amplitudes of the right- and left-traveling waves, the linear
coupling terms take into account resonant reflection of light on BG, and the
cubic terms account for the usual SPM and XPM nonlinearities. In this context,
the SPM coefficient takes the value s = 1

2 , while in the case s = 0 eqs.
(221) and (222) constitute a massive Thirring model, which is exactly integrable
by means of IST. The limiting case s → ∞, when eqs. (221) and (222) take the
form

iut + iux + |u|2u + v = 0, ivt − ivx + |v|2v + u = 0, (223)

has a different application to nonlinear optics: after making the replacements
t → z and x → t /c, eqs. (223) describe a dual-core fiber with a group-velocity
mismatch 2c between the cores, while their intrinsic dispersion is neglected, cf.
eqs. (211) and (212) (Malomed and Tasgal [1994]).
Although the system of equations (221)−(222) with s Ñ 0 is not integrable, it

has a family of exact soliton solutions found by Aceves and Wabnitz [1989] and
Christodoulides and Joseph [1989]. In particular, the expression for zero-velocity
solitons is

u = (1 + s )−1/2(sinQ) sech(x sinQ − 1
2 iQ) · exp(−it cosQ),

v = −(1 + s )−1/2(sinQ) sech(x sinQ + 1
2 iQ) · exp(−it cosQ),

(224)

where the parameter Q, which takes values 0 < Q < p , determines the soliton’s
width and amplitude. These solitons are frequently called gap solitons (GSs),
as they exist inside the gap, w2 < 1, in the linear spectrum, w2 = 1 + k2, of
the system (221)−(222). The exact zero-velocity GS solution to eqs. (223) is
obtained from eqs. (224) by setting s = 0.
A problem that may be considered by means of VA is internal vibrations of

perturbed GSs. The analysis, developed by Malomed and Tasgal [1994], has
produced an unexpected prediction – an intrinsic instability of a part of the
family of GS solutions (224). At the time this result was published, it seemed to
be an artifact generated by VA, and it was even regarded as a major failure of
the variational technique, stimulating a sophisticated analysis of situations when
VA may generate false soliton instabilities (Kaup and Lakoba [1996]; it was
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concluded that a spurious instability is possible, roughly speaking, in models in
which the quadratic part of the Hamiltonian is not positive definite, which is
the case for eqs. (221), (222), but not for the single or coupled NLS equations).
Indeed, in the case s = 0, the solitons of the integrable massive Thirring model
have no instability. However, rigorous results of direct investigation of the soliton
stability in the general model (221)−(222) with s Ñ 0, based on numerical
solution of the corresponding linearized equations, which were later reported by
Barashenkov, Pelinovsky and Zemlyanaya [1998] and De Rossi, Conti and Trillo
[1998], have confirmed that a part of the GS family (224) is indeed unstable
if s Ñ 0. In fact, the border between stable and unstable solitons in the cases
s = 1

2 and s = ∞, which are relevant to nonlinear optics (see above), is
close to that predicted by Malomed and Tasgal [1994] on the basis of VA, see
details below.
The variational ansatz for perturbed GS follows the pattern of the exact

solution (224):

u = hu(1 + s )−1/2 [sin(Q + q)]

× sech [(x + z) sin(Q + q) − i
2 (Q + q)

]
× exp [−i (au + bu(x + z) + 1

2cu sin(
1
2Q) · (x + z)2

)]
,

v = − hv(1 + s )−1/2 [sin(Q − q)]

× sech [(x − z) sin(Q − q) + i
2 (Q − q)

]
× exp [−i (av + bv(x − z) + 1

2cv sin(
1
2Q) · (x − z)2

)]
,

(225)

where hu, hv, Q, q, au, av, bu, bv, cu, cv and z are variational parameters that
may be functions of t. This ansatz lets one vary independently the central
position, width, amplitude, phase, carrier frequency, and chirp of the u- and
v-components.
Equations (221) and (222) can be derived from the Lagrangian L =

∫ +∞
−∞ L dx

with the density

L = i
2

[
u∗(ðt + ðx) u − u(ðt + ðx) u∗ + v∗(ðt − ðx) v − v(ðt − ðx) v∗

]
+ 1
2s
(|u|4 + |v|4) + |u|2|v|2 + u∗v + uv∗

(226)

[for the model (223), one should set s = 1 and drop the XPM term |u|2|v|2
in eq. (226)]. Substituting eqs. (225) into the Lagrangian, performing the
integration, and varying with respect to the free parameters yield a cumbersome
system of dynamical equations which have a fixed point (FP) corresponding to
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the unperturbed soliton (224): hu = hv = 1, Q = const. ≡ Q0, au = av = tcosQ,
bu = bv = cu = cv = q = z = 0.
Linearization of the general variational equations about FP leads to a sixth-

order system of equations for small internal vibrations of GS, which give rise to
the corresponding eigenfrequencies. They take a simple form in the case Q2 � 1,
when GS (224) has a small amplitude and large width, its shape being close to
that of the usual NLS soliton:

wq = ±
√
16(3 + p2)

45
−

[
80 + 192(1 + s )−1

675
p4 +

124
45
p2 + 4

](
Q

p

)2
≈ ± [2.14 − (1.01 + 0.66(1 + s )−1)Q2] , (227)

wQ+ = ±
√(

2p
3

)2
+

[
4 −

48(1 + s )−1 + 20
135

p2
]
Q2

≈ ±{2.09 + [0.61 − 0.84(1 + s )−1]Q2} , (228)

wQ− = ±6Q
2

p2

√
1 +

[
4(1 + s )−1 + 1

5
p2 − 12

](
Q

p

)2
≈ ±0.61Q2 {1 − [0.51 − 0.40(1 + s )−1]Q2} (229)

(note that w2Q− is much smaller than w
2
q and w

2
Q+, as Q

2 � 1). The eigenmode
corresponding to wq is dominated by the oscillations of the dynamical parameters
q/Q, (h2u − h

2
v ) and (au − av) in the ansatz (225), while the oscillation amplitudes

of other variables are smaller by a factor ~ Q. The wQ+ and wQ− eigenmodes
are dominated by oscillations of the variables z and (au + av), but in different
ratios.
With increasing Q, the shape of GS becomes essentially different from that

of the NLS soliton, and it becomes unstable at some critical value Qcr. In fact,
each of the three eigenfrequencies becomes unstable at some critical value of Q,
as illustrated by fig. 33, which displays the eigenfrequencies vs. Q/p in the
limit case corresponding to eqs. (223), i.e., s → ∞ (recall it is a model for
a group-velocity-mismatched dual-core fiber). In this case, the smallest Qcr is
generated by the eigenfrequency wq, which becomes imaginary, giving rise to a
monotonic (nonoscillatory) instability at Q ≈ 0.4p (see fig. 33a). This instability
is indeed spurious, as it has no counterpart in the numerically exact results
which were later reported for the same case by Barashenkov, Pelinovsky and
Zemlyanaya [1998]. However, two other eigenfrequencies found by means of
VA become complex (rather than imaginary) at Q ≈ 0.53p , giving rise to
oscillatory instabilities. The onset of this instability, which is oscillatory too,
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Fig. 33. Eigenfrequencies of internal vibrations of the gap soliton in the model (223) vs. the intrinsic
soliton parameter Q (see eq. 224), as produced by VA. The real part of the eigenfrequencies is shown
by the solid curve above the Q axis, and the absolute value of the dashed branches below the Q axis

gives the instability growth rate |Imw|, if any.
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was discovered by Barashenkov, Pelinovsky and Zemlyanaya [1998] at virtually
the same point, Q ≈ 0.53p . Moreover, it is seen in figs. 33b,c that a secondary
oscillatory instability sets in at a still larger value of Q, which also complies
with the numerically exact results.
Lastly, as concerns the spurious nonoscillatory instability generated by the

eigenfrequency wq (fig. 33a), this artifact can probably be explained by the theory
developed by Kaup and Lakoba [1996]; note that the maximum growth rate of
the spurious instability is 6 times as small as that of the genuine instability, cf.
figs. 33a and 33b, hence the spurious instability is not so important in practical
terms.

7.2. Solitons in linearly coupled waveguides with Bragg gratings

A natural generalization of the model for an optical fiber equipped with a Bragg
grating (BG) is a system of two parallel-coupled cores with the grating written
on both of them. As shown by Mak, Chu and Malomed [1998], this model gives
rise to generalized gap solitons (GSs) with interesting dynamical properties. The
model can be cast into the following normalized form [cf. eqs. (221)−(222) for
the single-core BG fiber and (200)−(201) for the dual-core fiber without BG]:

iu1t + iu1x + ( 12 |u1|2 + |v1|2) u1 + v1 + lu2 = 0, (230)

iv1t − iv1x + ( 12 |v1|2 + |u1|2) v1 + u1 + lv2 = 0, (231)

iu2t + iu2x + ( 12 |u2|2 + |v2|2) u2 + v2 + lu1 = 0, (232)

iv2t − iv2x + ( 12 |v2|2 + |u2|2) v2 + u2 + lv1 = 0, (233)

where the usual ratio 1 : 2 between the SPM and XPM coefficients is implied,
the BG-induced coefficient of the conversion between left- (u1,2) and right- (v1,2)
traveling waves is normalized to be 1, and l is the coefficient of the linear
coupling between the two cores. The same model can be realized as describing
stationary field distributions in two parallel-coupled planar waveguides with
BGs in the form of a system of parallel scores, in which case t and x play the
roles of the propagation distance and transverse coordinate, the diffraction in the
waveguides being neglected.
Zero-velocity solitons are sought for as

u1,2 = exp(−iwt)U1,2(x), v1,2 = exp(−iwt)V1,2(x), (234)

where the reduction V1,2 = −U ∗
1,2 may be imposed [in fact, the exact GS

solutions (224) in the single-core model are subject to the same reduction].
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Substituting this into eqs. (230)–(233) leads to coupled ODE’s (with the prime
standing for d/dx),

wU1 + iU ′
1 +

3
2 |uU1|2U1 − U ∗

1 + lU2 = 0, (235)

wU2 + iU ′
2 +

3
2 |U2|2U2 − U ∗

2 + lU1 = 0. (236)

A possible existence range for solitons in the (l,w) plane can be found from
the linear dispersion relation for eqs. (230)–(233). Looking for a linearized
solution in the form u1,2, v1,2 ~ exp(ikx − iwt), one obtains

w2 = l2 + 1 + k2 ± 2l
√
1 + k2. (237)

As was mentioned in the preceding subsection, the solitons can only exist in the
gap of the linear spectrum, i.e., at values of w which cannot be obtained from
eq. (237) at any real value of k . At l = 0, when the two waveguides decouple,
the gap is widest, −1 < w < 1. At |l| = 1, the gap closes up, i.e., no soliton
may exist at |l| > 1. To summarize, the soliton existence region is a part of the
rectangle |l| < 1, |w| < 1.
The stationary equations (235) and (236) can be derived from the Lagrangian

with the density

L = w(U1U ∗
1 + U2U

∗
2 ) +

i
2

[
U ′
1U

∗
1 − (U

∗
1 )

′U1 + U ′
2U

∗
2 − (U

∗
2 )

′U2
]

+ 3
4 (|U1|4 + |U2|4) − 1

2 (U
2
1 + U

∗ 2
1 + U 2

2 + U
∗ 2
2 ) + l(U1U ∗

2 + U
∗
1 U2).

Then, the following ansatz is adopted for the complex soliton solution sought
for:

U1,2 = A1,2 sech( mx) + iB1,2 sinh(mx) sech
2(mx), (238)

with real A1,2, B1,2 and m. The corresponding effective Lagrangian is

L ≡
∫ +∞

−∞
L dx

= m−1
[
2w(A21 + A

2
2) +

2
3w(B

2
1 + B

2
2) −

4
3m(A1B1 + A2B2)

+ (A41 + A
4
2) − 1.2857(B

4
1 + B

4
2) +

2
5 (A

2
1B
2
1 + A

2
2B
2
2)

−2(A21 + A
2
2) +

2
3 (B

2
1 + B

2
2) + 4lA1A2 +

4
3lB1B2

]
(239)

(the numerical coefficient 1.2857 is given by some integral), which generates
variational equations

3lA2,1 − 3(1 − w)A1,2 + 3A31,2 +
3
5A1,2B

2
1,2 − mB1,2 = 0, (240)

lB2,1 + 3
2B1,2 − 3.857B

3
1,2 +

3
5A

2
1,2B1,2 − mA1,2 = 0, (241)

2w(A21 + A
2
2) +

2
3w(B

2
1 + B

2
2) + (A

4
1 + A

4
2) − 1.2857(B

4
1 + B

4
2)

+ 2
5 (A

2
1B
2
1 + A

2
2B
2
2) − 2(A

2
1 + A

2
2) +

2
3 (B

2
1 + B

2
2) + 4lA1A2 +

4
3lB1B2 = 0.

(242)
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Fig. 34. Bifurcation diagram for zero-velocity solitons in the model of a dual-core nonlinear optical
fiber with Bragg gratings written on both cores.

A general result, following both from numerical solution of eqs. (240)–(242)
and from direct numerical solution of ODEs (235) and (236), is that a symmetric
solution, with A21 = A

2
2 and B

2
1 = B

2
2, exists at all values of w and l inside

the above-mentioned spectral gap, and it is the only soliton solution if the
coupling constant l is large enough. However, below a critical value of l (which
depends on w), the symmetric solution bifurcates, giving rise to three branches:
one remains symmetric, while two new mutually symmetric branches represent
nontrivial asymmetric solutions.
The bifurcation can be conveniently displayed in terms of an effective

asymmetry parameter

Q ≡ U 2
1m − U

2
2m

U 2
1m + U

2
2m

, (243)

where U1m and U2m are the amplitudes (maxima of the absolute values) of the
fields U1,2 in the two cores. A complete three-dimensional plot of the bifurcation,
i.e., Q vs. w and l, is shown in fig. 34. At l = 0, when eqs. (235) and (236)
decouple, the numerical solution matches the exact single-core solution (224),
while the other core is empty.
Generally, this symmetry-breaking bifurcation is similar to that shown in

fig. 28 for the dual-core nonlinear fiber without BG. However, unlike the
(slightly) subcritical bifurcation in fig. 28, both VA and direct numerical solutions
show that the present bifurcation is supercritical (alias a forward bifurcation).
The bifurcation diagram in fig. 34 was drawn using direct numerical results

obtained from eqs. (235)−(236), but its variational counterpart is very close
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Fig. 35. Shapes of the larger component U1 of the asymmetric soliton in the dual-core Bragg-grating
fiber at w = 0.5 and l = 0.2. The upper and lower panels show ReU1(x) and ImU1(x). In each

panel, the solid and dashed lines represent the numerical and variational results.

to it: the relative discrepancy between the VA-predicted and numerically exact
values of l at which the bifurcation takes place for fixed w is ~5%. To illustrate
the accuracy of VA, fig. 35 presents, for a typical case, a comparison between
the shapes of the asymmetric soliton predicted by VA and obtained from direct
numerical integration.
A direct numerical test of the stability of symmetric and asymmetric solitons

in the present model has yielded results exactly conforming to what should be
expected on the basis of the general bifurcation theory (see a book by Iooss and
Joseph [1980]): all the asymmetric solitons are stable whenever they exist, while
all the symmetric solitons, whenever they coexist with the asymmetric ones, are
unstable. However, beyond the bifurcation points, where the asymmetric solitons
do not exist, all the symmetric ones are stable.

§ 8. Stable beams in a layered focusing–defocusing Kerr medium

It is well known that the standard NLS equation governing the spatial evolution
of signals in bulk nonlinear optical media cannot support stable soliton-like
cylindrical beams: if the nonlinearity is self-defocusing (SDF), any beam spreads
out, while in the case of a self-focusing (SF) nonlinearity, a stationary-beam
solution with a critical value of its power does exist (Chiao, Garmire and Townes
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[1964]; as a matter of fact, this was the first soliton considered in nonlinear
optics), but it is unstable because of the possibility of wave collapse (see review
by Bergé [1998]). Recently, Bergé, Mezentsev, Juul Rasmussen, Christiansen
and Gaididei [2000] have demonstrated, by means of direct simulations, that
the beam can be partly stabilized if the nonlinearity coefficient is subjected
to weak spatial modulation along the propagation direction, so that the beam
power (which is virtually constant, as radiative losses turn out to be negligible)
effectively oscillates about the modulated critical value, sometimes being slightly
larger and sometimes slightly smaller than it. As a result, it was observed that
the beam could survive over a large propagation distance, although eventually it
might be destroyed by the instability.
Here, a model is considered in which the nonlinearity is subjected to a more

radical modulation, so that SDF and SF layers alternate periodically. The model
is based on the NLS equation

iuz + 1
2∇2

⊥u + g(z)|u|2u = 0, (244)

where the diffraction operator ∇2
⊥ acts on the transverse coordinates x and y,

and the nonlinearity coefficient g assumes positive and negative values g± inside
alternating layers with widths L±. While particular realizations of such a layered
medium are not discussed here in detail, it is relevant to note that it has been
demonstrated experimentally by Liu, Qian and Wise [1999a] that narrow layers
with a large negative value of the effective Kerr coefficient can be created, using
the cascading mechanism based on the quadratic nonlinearity. A novel result,
obtained recently by Towers and Malomed [2002] by means of both VA and
direct simulations, is that this type of nonlinear medium gives rise to completely
stable beams, which is the subject of the present section.
Axisymmetric spatial solitons are sought for in the form

u(z, r, q) = exp(iSq)U (z, r), (245)

where r and q are the polar coordinates in the transverse plane, the integer S is
vorticity (“spin”), and the function U (z, r) obeys the PDE

iUz +
1
2

(
Urr +

1
r
Ur −

S2

r2
U

)
+ g(z)|U |2U = 0. (246)

To apply VA to eq. (246), a natural ansatz is adopted,

U = A(z) rS exp
[
ib(z) r2 + i÷(z)

]
sech

(
r

W (z)

)
, (247)

where b and W are the soliton’s chirp and width. Skipping details of straightfor-
ward calculations, the following set of variational equations for the parameters
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Fig. 36. Parameter space of the variational model describing the cylindrical zero-vorticity beam in
a layered focusing–defocusing medium. The fixed point is stable in the speckled area.

of the ansatz (247) can be derived. First, due to the conservation of energy E
(actually, E is the power of the beam), there is a dynamical invariant

A2W (z)2(S + 1) = const. ≡ E, (248)

which makes it possible to eliminate the amplitude A in favor of the width W .
After that, there remains a second-order equation for W (z),

d2W
dz2

=

[
2I2
I1
−
2I4
I1
g(z)
]
W −3, (249)

the chirp being expressed in terms of W (z) as b(z) = (2W )−1dW/dz, cf. similar
equations (32) and (31) for the usual 1D soliton. The constants I1,2,4 are integrals
resulting from VA; for S = 0 (zero-spin beam), I1,2,4 ≈ (1.352, 0.398, 0.295).
For the piece-wise constant function g(x) defined above, eq. (249) can be

integrated inside each interval where g is constant. The result is(
dV
dz

)2
+ G = HV , (250)

where V ≡ W 2, G ≡ 8 [I2/I1 − (I4/I1) g], H ≡ 8h, and h [which is the
Hamiltonian of eq. (249) with g = const.] is an arbitrary integration constant.
Within the interval 0 < z < L+, the parameter G keeps a constant

given value G+, then it assumes another constant value G− in the interval
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Fig. 37. Numerically simulated evolution initiated by the configuration (247) with S = 0, L = 1,
and G = −1.3. The upper and lower plots show the evolution of the beam’s peak amplitude and

cross-section, respectively, vs. the propagation distance.

L+ < z < L+ + L−, and this configuration repeats itself periodically. The formulas
can be additionally rescaled to set L− ≡ 1 and G− ≡ 1, then there remain two
irreducible control parameters, L+ ≡ L and G+ ≡ G (note that the definition of G
implies that, once G− = 1 is set, then G ≡ G+ may only be < 1, including negative
values). Across each junction point, the values of V and dV/dz are related
according to the physical conditions that the width and chirp of the pulse, as
functions of z, must be continuous. As immediately follows from the above equa-
tions, this simply means that both V and dV/dz are continuous across the jump.
Starting with arbitrary initial values V0 and V ′

0 of V (z) and dV/dz at z = 0,
one can derive a map that yields the values Ṽ0 and Ṽ ′

0 of the same variables
at the end of the period, z = L+ + L− ≡ 1 + L. Straightforward integration of
eq. (250) in the segments L±, with regard to the continuity of V and dV/dz at the
junction points, makes it possible to derive the map in an explicit although rather
cumbersome form. Nevertheless, a fixed point (FP) of the map, that corresponds
to the quasi-stationary propagation of the beam, is given by simple expressions:

V0 = ± L(G − 1)

4
√
L + 1

√
−1 − LG

, V ′
0 = ∓

√
−1 − LG√
L + 1

, (251)

which make sense only for negative values G < −1/L.
To investigate the stability of FP, one should find eigenvalues l of the Jacobian

of the map, ð
(
Ṽ0, Ṽ ′

0

)/
ð
(
V0,V ′

0

)
. The FP is stable if both eigenvalues satisfy

the condition |l| � 1. The results of this analysis are summarized in fig. 36. No
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FP exists beneath the curve L = −1/G . Above this curve, FP is stable inside a
speckled band. Outside the band, FP is unstable.
To test the VA-based analytical results against direct simulations, the un-

derlying equation (244) was solved numerically, using the ansatz (247), whose
parameters were taken at FP (251), as the initial configuration. A typical result
is shown in fig. 37: after a short relaxation period, the initial beam reshapes into
a nearly stationary stable one, which propagates with small residual oscillations.
This seems to be the first example of a stable cylindrical beam in a medium
with a Kerr nonlinearity. Simulations of the beams with nonzero vorticity S, see
eq. (245), show that, unlike the S = 0 beam, they are all unstable.

§ 9. Conclusion

The aim of this review was to demonstrate that a combination of the variational
approximation with direct numerical simulations is the most natural and efficient
approach to many problems in nonlinear optics and other areas of physics which
are based on nonlinear PDEs. Although the technique has already been applied
to a large number of systems, its potential is far from being exhausted. The
outburst of activity in the field of dispersion management has been responsible
for the recent renaissance of variational methods. Another fast developing topic
which calls for the development of these methods at a higher level is the study
of spatiotemporal pulses in multidimensional optical media. Beyond the limits
of nonlinear optics, the variational approximation has recently often been used
in studies of Bose–Einstein condensates. Thus, variational methods remain a
powerful and universal tool in the arsenal of modern-day nonlinear science.

Acronyms adopted in the text

1D one-dimensional

2D two-dimensional

BDW Bloch domain wall

BG Bragg grating

c.c. complex conjugate (in equations)

CQ cubic–quintic (equation)

CW continuous wave

DCF dual-core fiber
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DDF dispersion-decreasing fiber

DM dispersion management

DS dark soliton

FP fixed point (of dynamical equations or map)

FWHM full width at half-maximum (of a solitary pulse)

GL Ginzburg–Landau (equation)

GS gap soliton

IST inverse scattering transform

KdV Korteweg–de Vries (equation)

NLS nonlinear Schrödinger (equation, or soliton)

ODE ordinary differential equation

PAD path-average dispersion (in a dispersion-managed fiber-optic link)

PDE partial differential equation

rhs right-hand side (of an equation)

SDF self-defocusing (nonlinearity)

SF self-focusing (nonlinearity)

SPM self-phase modulation

TOD third-order dispersion

VA variational approximation

VK Vakhitov–Kolokolov (stability criterion for solitons)

WDM wavelength-division multiplexing

XPM cross-phase modulation

ZDP zero-dispersion point

ZS Zakharov–Shabat (equations)
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Blanchard, P., and E. Brüning, 1992, Variational Methods in Mathematical Physics (Springer, Berlin).
Boffeto, G., and A.R. Osborne, 1992, J. Comp. Phys. 102, 252.
Bondeson, M., M. Lisak and D. Anderson, 1979, Phys. Scripta 20, 479.
Bullough, R.K., A.P. Fordy and S.V. Manakov, 1982, Phys. Lett. A 91, 98.
Caglioti, E., S. Trillo, S. Wabnitz, B. Crossignani and P. DiPorto, 1990, J. Opt. Soc. Am. B 7, 374.
Chernikov, S.V., E.M. Dianov, D.J. Richardson and D.N. Payne, 1993, Opt. Lett. 18, 476.
Chiao, R.Y., E. Garmire and C.H. Townes, 1964, Phys. Rev. Lett. 13, 479.
Christodoulides, D.N., and R.I. Joseph, 1989, Phys. Rev. Lett. 62, 1746.
Chu, P.L., Y.S. Kivshar, B.A. Malomed, G.D. Peng and M.L. Quiroga-Teixeiro, 1995, J. Opt. Soc.
Am. B 12, 898.

Chu, P.L., B.A. Malomed and G.D. Peng, 1993, J. Opt. Soc. Am. B 10, 1379.
Chu, P.L., B.A. Malomed and G.D. Peng, 1996, J. Opt. Soc. Am. B 13, 1794.
Chu, P.L., B.A. Malomed, G.D. Peng and I.M. Skinner, 1994, Phys. Rev. E 49, 5763.
Clarke, S.R., R.H.J. Grimshaw and B.A. Malomed, 2000, Phys. Rev. E 61, 5794.
Cohen, G., 1995, Phys. Rev. E 52, 5562.
Cooper, F., H. Shepard, C. Lucheroni and P. Sodano, 1993, Physica D 68, 344.
Coullet, P., J. Lega and Y. Pomeau, 1991, Europhys. Lett. 15, 221.
De Angelis, C., 1994, IEEE J. Quantum Electron. QE-30, 818.
De Rossi, A., C. Conti and S. Trillo, 1998, Phys. Rev. Lett. 81, 85.
de Sterke, C.M., and J.E. Sipe, 1994, in: Progress in Optics, Vol. 33, ed. E. Wolf (North-Holland,
Amsterdam) ch. 3.

Desaix, M., D. Anderson and M. Lisak, 1990, Opt. Lett. 15, 18.
Desaix, M., D. Anderson and M. Lisak, 1991, J. Opt. Soc. Am. B 8, 2082.
Desaix, M., D. Anderson and M. Lisak, 1994, Phys. Rev. E 50, 2253.
Desaix, M., D. Anderson, M. Lisak and M.L. Quiroga-Teixeiro, 1996, Phys. Lett. A 212, 332.
Desyatnikov, A., A.I. Maimistov and B.A. Malomed, 2000, Phys. Rev. E 61, 3107.
Dimitrevski, K., E. Reimhult, E. Svensson, A. Öhgren, D. Anderson, A. Berntson, M. Lisak and
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Krökel, D., N.J. Halas, G. Giuliani and D. Grischkowsky, 1988, Phys. Rev. Lett. 60, 29.
Kuehl, H.H., 1988, J. Opt. Soc. Am. B 5, 709.
Kumar, A., S.N. Sarkar and A.K. Ghatak, 1986, Opt. Lett. 11, 321.
Kumar, S., M. Wald, F. Lederer and A. Hasegawa, 1998, Opt. Lett. 23, 1019.
Kutz, J.N., P. Holmes, S.G. Evangelides and J.G. Gordon, 1998, J. Opt. Soc. Am. B 15, 87.
Kuznetsov, E.A., A.V. Mikhailov and I.A. Shimokhin, 1995, Physica D 87, 201.
Lakoba, T.I., and D.J. Kaup, 1997, Phys. Rev. E 56, 4791.
Lakoba, T.I., D.J. Kaup and B.A. Malomed, 1997, Phys. Rev. E 55, 6107.
Lakoba, T.I., J. Yang, D.J. Kaup and B.A. Malomed, 1998, Opt. Commun. 149, 366.
Landau, L.D., and E.M. Lifshitz, 1975, Mechanics (Pergamon Press, New York).
Landau, L.D., and E.M. Lifshitz, 1977, Quantum Mechanics (Pergamon Press, New York).
Lewis, Z.W., 1985, Phys. Lett. A 112.
Lin, C., H. Kogelnik and L.G. Cohen, 1980, Opt. Lett. 5, 476.
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