Chapter 3

Water Waves

Many of the general ideas about dispersive waves originated in the problems of
water waves. This is a fascinating subject because the phenomena are familiar
and the mathematical problems are various.

— (. B. Whitham

3.1 Governing Equations for Water Waves

3.1.1 Euler equations

In this chapter, water is assumed to be an inviscid, incompressible fluid. Body
force is the earth’s gravity. From section 2.1.2, the conservation of mass and
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54 Chapter 3. Water Waves

momentum yields

Uy + vy + w, = 0, (3.1.1)
1

Uy + Uty + vy + wu, = —= p,, (3.1.2)
p
1

vy + Wy + vuy + wu, = —;py, (3.1.3)

1
we + uwz + vwy, + ww, ==sp-g (3.1.4)

These equations are valid in the fluid domain and are called the Euler equations.
Here (u, v, w) = u is the velocity field, p is the density, p denotes pressure, and
g is the gravitational acceleration (see Fig. 3.1).

Boundary conditions vary from problem to problem. For surface waves in
an open ocean (without shorelines), there are two boundaries. One is on the
ocean bottom, which is assumed to be rigid. The other is on the free surface of
the water, which is to be determined. On the free surface two conditions need
to be specified. The first one is the dynamical condition, reflecting the external
actions on the free surface. The other one is the geometrical condition, which
states that the water particles on the free surface should always stay on the
free surface. At the bottom, since there is no other fluid interacting with the
water, the only condition which applies is the geometrical one showing that it
is impossible for water to penetrate the rigid bottom.

Let z = n(z,y,t) and z = —h(z,y) be the free surface and the bottom
topography respectively. Then, on the free surface z = n(z,y,t), we have

p=0(z,y,t)  (dynamical), 5
M+ unz+vgy =w  (geometrical). 6

And on the bottom z = —h(z,y), we have
uhy 4+ vhy +w =0 (geometrical). (3.1.7)

In (3.1.5), B is a given surface pressure disturbance and the geometrical bound-
ary condition (3.1.6) was derived earlier in section 2.2. Therefore, the water
wave problem in an open ocean is a free surface problem defined by (3.1.1) -
(3.1.7). Solving such a wave motion problem is a challenging task.

3.1.2 Potential flow

The potential flow is a flow whose velocity field is irrotational, i.e.,
w=Vxu=0

where w is called the vorticity. From (3.1.1) - (3.1.4), we can derive an equation
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Figure 3.1: Surface water waves in an open ocean

This equation is called the vorticity equation.
Exercise: Derive (3.1.8) from (3.1.1) - (3.1.4).

Equation (3.1.8) has a solution w = 0. Hence, w = 0 is a solution to the
Euler equations. Thus, irrotationality is a mathematically realistic assumption.
Thus, it is claimed that an irrotational flow does exist in the Euler equation
sense. Specifically, a uniform flow in a channel is irrotational. Of course, we
always bear in mind that mathematical models (such as the Euler equations)
and laboratory observed phenomena (such as the water waves) are only mutual
approximations under certain conditions. For instance, any flow in the real
world has a viscosity which is not zero and a density which is not uniform. The
viscosity and the nonuniform density (the later is called the stratification of a
fluid), always cause rotation of fluid elements. So, abosulte irrotational flows
can never be found in nature. But in many cases, the vorticity is so weak that
the flow can be considered to be approximately irrotational.

If V x u =0, then there exists a potential ¢ such that

u=Ve¢.

In this situation, the equations (3.1.1) and (3.1.8) may be considered as the
governing equations since they are dependent on (3.1.1) and (3.1.2) - (3.1.4).
Equation (3.1.8) is satisfied if w = 0. Hence the only equation which needs to
be satisfied is (3.1.1). This is the case when ¢ is a harmonic function, i.e.

Vi = 0. (3.1.9)
Using
V(u-u)=2(u-V)u+2ux (V xu),
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equation

1
u+ (u-Viu= —;Vp—glc

(i.e. equations (3.1.2) - (3.1.4)) can be written as
2d]
u;+%V(uou)+wxu:—V(j ?p-}-yz). (3.1.10)

Let Py 1
H =/ f B §Iu|2+gz. (3.1.11)

This H is called the head of the flow. If w = V x u = 0, there exists a sca_a,lar
potential function ¢ such that u = V¢ . Consequently, equation (3.1.10) gives

V(¢ + H) =0.

Hence,

¢‘t+/P%’J+%1V¢|’+gz: c() (3.1.12)

where C(t) is the arbitrary constant from spatial integration and is a function
of t. Equation (3.1.12) is called the Bernoulli equation, which is very useful in
hydrodynamics.

Now we are ready to formulate the boundary conditions for the Laplace
equation (3.1.9) for an open ocean. On the free surface z = 5(z, y, t), we have

¢ + /P & + %|V<}5|2+grj = C(t) (dynamical condition),(3.1.13)
e+ ¢Inxp+ $yny = ¢. (kinematic condition). (3.1.14)

On the bottom z = —h(z,y), we have
bzhz + dyhy + ¢, =0 (kinematic condition). (3.1.15)

The function C(f) in (3.1.13) can be determined by a known condition at a
point on the free surface, such as the point at infinity.

Example 1: Ifh(z,y)=-1,and p=1,then¢ =V y, n=0, C(t) = V{/2
is a solution of the problem (3.1.9), and (3.1.13) - (3.1.15). Physically, this
solution represents a uniform flow with velocity Vp along the y-axis.
Example 2: There is right cylindrical water container which holds wat.er. of
depth H. At the bottom of the container there is a small hole through which
the water flows out. The area of the small hole is § which is much smaller than
the base area A of the right cylindrical container. We may use the Bernoulli
theorem to compute the total time T needed for all the water to drain out (see
Fig. 3.2).

By the Bernoulli theorem, we can first evaluate the flow speed at the drain-
ing hole. Since the depth decrease is very slow, the flow may be considered
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Figure 3.2: Application of the Bernoulli theorem to the draining water problem.

approximately stationary. We also regard the water density as a constant.
Then the head on the free surface of the water is equal to the head at the hole:

L
7Y
In the above, we have chosen the bottom of the container as the zero point
for the vertical coordinate. On both the free surface and the hole, the water
pressure should be equal to the air pressure Pa. The water flowing speed at the
hole is v and the free surface is moving down at a speed equal to u. Both u and

v are unknowns. We need an additional equation to solve the above problem.
This is the conservation of flux:

Pa , 1, Pa
—+su+gH ="—+4
p 2 P

ud =vS.

Solving the above coupled equations, we obtain

B 29H 4 o5 [ 2H
S\ 1-sar n T A\ 1-s2/ar

Since S .< A, we have an approximation
v \/29H.

The total time needed to drain the water is denoted by T. The conservation
of mass leads to

—Adh = Svdt.

Integrating the above with respect to A from H to zero and with respect to ¢
from zero to T, we can obtain that

H (3.1.16)
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where m, = (5%/A%)(1 — 5%/A%)~! is considered as an effective gravitational
coefficient. If we consider m.g as the effective gravitational acceleration, then
equation (3.1.16) gives the time needed for a free falling particle to reach the
ground from the height H in this effective gravitational field. This is a familiar
result from general physics or elementary calculus.

3.2 Shallow Water Equations

3.2.1 Shallow water equations

Consider the situation that the wave length A (as the horizontal length scale
L) is much larger than the water depth H. Hence

H 2
D<e= (f) <1 (3.2.1)

Let us consider two-dimensional problems. The z-axis is along the horizontal
direction, and the y-axis is along the vertical direction opposite to the gravi-
tational force. Assume that the free surface is not subject to external forces.
Then from section 3.1., we have the following mathematical setup of the prob-
lem:

g +vg. =0, (3.2.2)
v +utug. + vt uy. = —% Pres (3.2.3)
vie +utyg, + v Y. = —% Py — 4 (3.2.4)
Uys =Ups (irrotational); (3.2.5)
with boundary conditions
=0, g +utnl.=v" on y =g (@, 1) (3.2.6)
whi.+v* =0 on y* = —h*(z*). (3.2.7)

Here p is a constant, and “* ” signifies that the quantities are dimensional. To
nondimensionalize the above equations, we introduce the following dimension-

less quantities:
Hz* y* H
eo = (%) t= AN
_ v L v _r
wo = (Gravm) 7=
In the above non-dimensionalization process, the length scale and the time

scale are the most crucial. The condition of the horizontal length scale being
not much greater than the vertical length scale implies that the fluid motion

(3.2.8)
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is quite violent. The vertical acceleration is important. In order to observe
the relatively fast event, the time scale has to be short. The relative size of
the vertical velocity with respect to the horizontal velocity is determined by
the conservation of mass when the length scales are prescribed. The mass
conservation equation suggests a relation

U* VU _ 0

T T "

where U* and V* are scales of the horizontal and vertical velocities respectively.
Therefore, we have the relative size

vV H
s~ L’
We carry out this process of nondimensionalizing the physical quantities in

the above way because we would like to bring every dimensionless quantity to
the size O(1). The nondimensionalized form of (3.2.2) - (3.2.7) is

Uz + vy, =0, (3.2.9)
Up + vy + vuy = —p,, (3.2.10)
€ (v + uvy + voy) = —p, — 1, (3.2.11)
Uy = €Vy; (3.2.12)

on the free surface y = 5(z, 1) :
r=0, m+up,—v=0: (3:2.13)

and on the bottom y = —h(z) :
uhy + v = 0. (3.2.14)

Assume that the problem (3.2.9) - (3.2.14) has an asymptotic solution of
the form

(ul vy, 1, p) = (uﬂa Vo, To, PO) +E(u1, v, M, ]D]) +0(52) . (3215)

Substituting (3.2.15) into (3.2.9) - (3.2.14) and assembling the terms of like
powers of ¢ gives

Order €° ;
Ugg + voy = 0, (3.2.16)
Upt + Uglgy + Uplpy = —Pog, (32]7}
poy = ~1, (3.2.18)
Ugy = 0; (3.2.19)
ony=mn: po=0, 7o+ uones = vg; (3.2.20)

andon y = —h(z) :  wughy + vy = 0. (3.2.21)
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In the above, the boundary conditions on the free surface are approximated by
a Taylor expansion of (3.2.11) about y = 5o.
From equations (3.2.18) and (3.2.20),

Po = =Y + 7o. (3.2.22)

From equation (3.2.19), we find that ug is independent of 4 and hence a function
of only = and ¢:

ug = f(z, 1). (3.2.23)
This equation clearly shows that the zeroth order horizontal velocity does not
have a vertical structure. Intuitively, this is generally false when the moving

water is very deep. Hence, equation (3.2.23) is a striking manifestation of the
shallow water flow.

Integrating (3.2.16) with respect to y and using the bottom boundary con-
dition (3.2.21), we have

vo =—fzy— (fh)s. (3.2.24)
Then equations (3.2.17) and (3.2.20) become

ff+ff:l:+7?ﬂ.-r::0,
”J‘Ot+f’7l]z+fr770+(fh)z =0.

These two equations can be written as

mow+ [£(mo+h)]_=0, (3.2.25)
fo+ ffz+m0:=0. (3.2.26)

Equations (3.2.25) - (3.2.26) are called the shallow water equations. These are
the equations that the zeroth order asymptotic approximate selution (3.2.15)
should satisfy. Equations (3.2.25)-(3.2.26) are in dimensionless variables. The
dimensional form of these two equations (3.2.29)-(3.2.30) is going to be shown
later.

If the asymptotic assumption (3.2.15) holds, it is clear that when h= con-
stant (flat bottom), then

f(a:,t)—% [_hu(z, y, f.)dy1 = 0(e) (3.2.27)

where u(z,y,1) is from the exact solution of (3.2.9) - (3.2.14). Hence, f(z,t) is
approximately the average horizontal velocity.

However, the mathematical rigor of the asymptotic assumption (3.2.15)
requires a proof.

Exercise: Suppose that h = constant and u(z,y,t) satisfies the problem
(3.2.9) - (3.2.14). Show that if 7o and f solve the problem (3.2.25) -(3.2.26),
then equation (3.2.27) holds.

A simpler way to derive the shallow water equations is from the physical
point of view. The physics assumption for shallow water flow is that there is
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no vertical acceleration. Since, in an inviscid fluid, the driving force for the
acceleration in the vertical direction consists of only the pressure gradient and
the gravity, the vanishing vertical acceleration of the fluid implies that the
pressure gradient must be balanced by the gravity. Thus, the pressure is equal
to the hydrostatic pressure. Namely,

" =pg(n" —y"). (3.2.28)

Under the shallow water assumption, the continuity equation can be re-
placed by the conservation of mass flux

7+ [w (A" +7%)],. =0 (3.2.29)

In the Euler equations, there are two equations for the conservation of mo-
mentum. One is for the horizontal direction and the other one for the vertical
direction. Since under the shallow water assumption the vertical acceleration
is zero, only the conservation of the horizontal momentum plays a role. The
conservation of the horizontal momentum is

ufe +u'u. = —pr..
By equation (3.2.28), we have
ufe + uug. + gnz. = 0. (3.2.30)

Equations (3.2.29) and (3.2.30) are the dimensional form of the shallow water
equations (3.2.25) and (3.2.26). The nondimensionalization rule is, of course,
still according to (3.2.8).

From the above analysis, we have seen that the physical argument is sim-
ple and straightforward. In contrast, the mathematical analysis is tedious but
shows explicitly the size of the terms thrown out in the approximation process.
It seems that the physical analysis and the mathematical analysis are compli-
mentary to each other and we should hesitate to suggest that one analysis be
superior to the other.

If h is a constant, then equations (3.2.25) - (3.2.26) can be written into a

conservation law
o f no+h Mo _
( f ):+[ 1 F ] ( f )1—0. (3.2.31)

The eigenvalues of the coefficient matrix are

)\1‘2 = fi vV 7o + h. (3232}

Hence, equation (3.2.31) is a strictly hyperbolic system. The wave propagation
speeds relative to the mean flow f are the differences between the characteristic
speeds and the mean flow velocity. Namely,

Ut =Ma—f=2Vm+h (3.2.33)
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Figure 3.3: Wave breaking on a beach of uniform slope

and UF are called the the propagation speeds of shallow water waves. The
“4” and “—" signs indicate that a disturbance in a shallow water propagates
in both directions (upstream and downstream). This shallow water wave speed
can be observed very easily by slightly disturbing a shallow water pond. The
small wave propagates in the rest water at the shallow water speed VgH.

Shallow water equations are particularly interesting when h is not a con-
stant. Offshore engineers use them to study water motions on beaches, such as
the well known running-up problem. In addition, the shallow water equations
are of rich mathematical structure and applicable to many fields of sciences and
engineering. Actually, the gas dynamics equations have the same mathematical
structure as the shallow water equations (3.2.25) - (3.2.26). Therefore, it is not
surprising for shallow water equations to have discontinuous solutions, which
are known as the undular bores. As we discussed in Chapter 2, discontinuous
solutions of gas dynamics equations exist and are called the shocks.

3.2.2 Wave breaking on a beach

Consider a surface wave of smooth profile moving toward the shoreline of a
uniformly sloping beach (see Fig. 3.3). Our common sense suggests that this
profile would soon or later become non-smooth and break on the beach.

The shallow water equations

ne+ [u(n+h)], =0, (3.2.34)
u + utgs + 1, = 0. (3.2.35)
are used as the governing equations. The z-axis is chosen to be the undisturbed
free surface and @ = £ is the fixed shoreline. The wave front z = s(t) is defined

by u(z, t) =0, 7(z, ) = 0 when z > 5(t). The following assumptions are
taken:

{a) » and n are continuous functions;

(b) The first and the second partial derivatives of u and 5 suffer at most jump
discontinuities;
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(c) u(z,t) =0, n(=z,t)=0if z > s(t).

Assumption (a) is reasonable since we are considering the wave motion be-
fore the breaking of the surface. An undular bore (a discontinuity) can form
only after the breaking. Assumption (c) is consistent with the statement that
“r = £ is a fixed shoreline.” This is more or less true since waves break long be-
fore they reach the initial position of the shoreline. Let f~ = limz_ ()0 f(2)
denote the value of the quantity f right behind the wave front. Then, assump-
tions (a) and (c) yield (du/dt)” = (dn/dt)” =0, i.e.,

cluz)” = —(ue)” , c(ne)” =—(m)" (3.2.36)
where d
c=— (3.2.37)

is the velocity of the front. Just behind the wave front (i.e., s — z = o+),
equations (3.2.34) - (3.2.35) become

()" = k()™ ()" == (na) (3.2.38)
If we assume that (n;)” # 0, then (3.2.36) and (3.2.38) yield
ds
c=—= Vh. (3.2.39)

This is exactly the propagation speed of shallow water waves as we wanted to
find.

We are mainly interested in the breaking, i.e., where and when (1;)” be-
comes infinity. Let

a=a(z)= (1) . (3.2.40)
From (3.2.34) - (3.2.35) and the above derived results, we can have

_ _  %h,  3a?
¢ (ttz2) ™ = (uee) + —Za+ % =0. (3.2.41)

Exercise: Derive equation (3.2.41).

By
d 2 _ _ dt
E(ur) = (tzz)” + (ust) T
d - - _ di
(w07 = (o)™ )
we have
5 d - d ~ . _ -
e E(HI) _c-&;(uz) =¢* (Upz)” — (use) . (3.2.42)
From (3.2.38) - (3.2.42), one can derive
da  3h, 3
T + 0 ° + ot = 0. (3.2.43)
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Exercise: Derive equation (3.2.43).

To integrate equation (3.2.43), let a = 1/b. Then

i L R (3.2.44)

This first order ODE can be solved by variation of constants. Finally,

3/2

b(2) = 10+ 1) (1)) (3.2.45)
where

[(I} _ 3h3,:';(0) L: h—?/*t(g) o (3.2.46)

Whether a wave will break depends on whether &(£) = 0 for some £ less than
or equal to £. There are two cases: a depressive wave (a(0) = (1z)~(0) > 0) and
an elevation wave (a(0) = (1)~ (0) < 0). Elevation waves always break. But,
depression waves will break if and only if I(£) < oo and £ = £. If |a(0)|I(£) > £,
then £ < £, and the wave breaks before the shoreline. If |a(0)|7(£) < 0, then
€ = £, and the wave breaks at the shoreline.

For more details on wave breaking on beaches, see Refs. [3] and [4] listed
as additional reading materials at the end of this chapter.

3.3 Dispersive Water Waves

3.3.1 Dispersive waves

If waves of different wave lengths propagate at different speeds, then we say that
the waves are dispersive. Whether propagated waves can be called dispersive
waves depends on not only the wave maker but also the media in which the
waves propagate. We can send dispersive waves through most materials in
nature. Water is a dispersive medium. The following simple experiment can be
done by everybody to demonstrate the dispersion behavior of the water waves
of small amplitude.

Stand near a pond and get two stones in your hands, one of which is much
larger than the other. Throw the smaller one into the pond. The stone gen-
erates water ripples, whose wave lengths are relatively short and which propa-
gate at relatively low speeds. Then throw the larger piece into the pond. The
larger stone generates water ripples whose wave lengths are relatively longer
and which propagate at relatively higher speeds. In summary, the results of
this experiment imply that the water waves with longer wave lengths propagate
faster than those with shorter wave lengths.

To see the dispersive property of waves mathematically, let us look at the
following three examples.

Example 1. Consider the Klein-Gordon equation

Bit — dox + ¢ = 0. (3.3.1)
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Assume this Klein-Gordon equation has a wave solution of the form
¢ = acos(kz — wt) (3.3.2)

where w is called the frequency, k is called the wave rumber and A = 1/k is
called the wave length. Substituting (3.3.2) into (3.3.1) we have

(- w? + % + 1) cos(kz — wt) = 0.

Hence, expression (3.3.2) is a nontrivial solution of equation (3.3.1) if and only
if

w? = k24 1. (3.3.3)
This equation is called a dispersion relation (or eikonal equation in optics,
or Hamilton-Jacobi equation in the Hamiltonian mechanics). The observable
velocity of a wave of frequency w and wave length A is wA (or w/k) and is called
the phase velocity. Hence, the phase velocity of the wave is

1
%:i\luﬁ = +/1+ A2, (3.3.4)

Therefore waves of different wave lengths propagate at different speeds. The
larger the wave length, the higher the propagation speed. Furthermore, the
dispersive wave (3.3.2) with a fixed wave length propagates in two directions
since the phase velocity can be positive or negative according to (3.3.4).

Example 2. Consider the linear Korteweg-de Vries equation

3 1
¢t + bz + =Pz = 0. (335)
2 6
Let
¢ = acos(kz — wt). (3.3.6)
Inserting (3.3.6) in (3.3.5), we can obtain a dispersion relation
3 1
= ck— k% 3.3.7
YT (3.37)
Then the phase velocity is
w 3 1
i 3.3.8
k2 6 ( )

Thus the wave (3.3.6) is dispersive and the wave with a fixed wave length
propagates only in one direction since there is only one given sign for a given
k.

Example 3. Consider the cubic nonlinear Schrédinger equation
i 4 Upe + [ufu=0, —oco0<z,t<o0o, (3.3.9)

where i = /—1 is the imaginary unit and u(z,?) is a complex valued function.
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Figure 3.4: Two-imensional shallow water waves in an open ocean of flat bot-
tom.

Let us look for a solution of the form
u = aexpli(kz +wt)], a = constant (may be complex valued). (3.3.10)

Substituting (3.3.10) into equation (3.3.9), we have the following dispersion
S w= |a|? - k2. (3.3.11)
This dispersion relation depends on the amplitude of the solution, and 50 t.he
phase velocity also depends on the solution amplitude. The phase velocity is
@ By (3.3.12)

k k

From this expression, we can see that a wave of very long wave le.ngth has a
phase velocity which is proportional to the amplitude (?f t;l'fe .solut.lon. But a
wave of very short wave length has a phase velocity which is inversely propo-
tional to the amplitude of the solution. This property should not be due to
the wave maker. Instead, this property has something to do with t}-le natu-re of
the medium in which the wave propagates. We will discu.f»s the cubic nonlinear
Schrédinger equation and its solution properties further in Chapter 7.

3.3.2  Boussinesq equations and the KdV equation

Consider the long wave motion of water with flat bottom .(see Fig. 3.4). Let L
be the horizontal length scale which characterizes the typical wave length. I'Jet
I be the vertical scale which is the upstream mean depth. Assume the motion
is irrotational. Then we have the following mathematical problem:

A" =0, 0<y*" <H+n", (3.3.13)

on the free surface y* = H + 5*,
T + @enze — by =0, (3.3.14)
0"+ ¢ + % (V*¢*)? = constant, (3.3.15)
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and on the bottom

¢ye = 0. (3.3.16)
We introduce the following dimensionless variables
e=Z oV _VEH,.
L H L
e ?—: d) =¢ 1 ¢I*
H VeHL'

and

H\?2
€= (f) <1 (long wave assumption).

The time scale L/\/gH is the time needed for a linear shallow water wave
to travel a distance L. This horizontal length scale may be regarded as a
typical wave length for periodic waves. The horizontal velocity is u* = Pre ~
eLygH /L = e\/gH. The vertical velocity scale is v* = $ye ~ eL\/gH/H =
€'/2\/gH. From the above two statements it seems that the vertical velocity is
in the order 61/2\/57f7 and the horizontal velocity is in the order ev/gH. Hence
the vertical velocity is greater than the horizontal velocity. This is against our
physical intuition and is an inappropriate interpretation of the two statements
above. As we discussed in section 3.2 the relative size of the horizontal velocity
with respect to the vertical velocity, i.e. the relationship V*/[/* = H/L, should
still hold. Hence, we expect that the leading order term of ¢ is independent,
of y in order to make the nondimensionalization consistent with the physics.
Consequently, the vertical velocity is v* = #re ~ 2 /G which is consistent,
with the relation V*/1/* = H/L = €l/2, The nondimensionalized problem is

ony=1+n,
€+ € don, — ¢, =0, (3.3.18)
1
n+¢z+§¢§+§¢j =0; (3.3.19)
on y =0,
‘ﬁy =0. (3320)
Let "
6= U fala,1). (3.3.21)
n=0

Substituting (3.3.21) into (3.3.17) and using (3.3.20), we have
f?n—l =0; n= 112:3""1

€ 53
fa= _é‘fﬂrm; fa= 2_4'.1“-01:::::;-;, SHE
(1 g
n =T ——

(2n)! Qg2n/® 7
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Let f = fo and take only quantities of order lower than O(e?) in (3.3.18) -
(3.3.19). Then 7

ne + [(1 + E?’,‘}fz}z == %fzmz: =0 (52) ’ (3322)

3.2
U+fz+%f§—%f=zt:0(€2)- (3.3.23)

In the above, let u = f; and differentiate (3.3.23) with respect to z. This leads

to
— 3.3.24)
e + [{1+ET])'U-]:_ Eu:xz =0, (

(3.3.25)

€
u1+fuuz+ﬂz-§ﬂzzt:0-

] ] i 171 bove
These equations are called the Boussinesq equations. Linearizing the a

s and dropping high order derivatives, we obtain

equation
e + ur = 01 (3326)
up+ 1 = 0. (3.3.27)
i Mot — Nez = 0- (3.3.28)

e N _ 4+
This equation admits waves traveling in two directions, n(:,tf]ﬁ dnv;:i(t::}:] - =) y
nr(z-+t). Furthermore, equations (3.3.26) - (3.3.27) can be satisfie:
We may take this result as a hint and assume

u=n(z, t)+eAlz, 1) +0 (%) . (3.3.29)

i h
in (3.3.24) - (3.3.25). Substituting (3.3.29) into (3.3.24) - (3.3.25), we have

€ €A -0
n:+7?z+fo+257]n;c—'éﬂa:zr‘E zEE — Yy

€ € _
e+ Nz + €Ay + ennz — ‘i’?::zf. = 'iAz:zt =0.

; i = 01is a
If we consider those waves traveling only to the r\gl}t, therz r,w_tn;t-onmy L e
constraint on the above two equations. We applg{r ;hl; .cohns ?;r‘watives e
= — . e higher
t = —nn; and €Nzzt = —€Nzzz- ¢ _
zig}ﬁ g;gernt,g:ms EA:_:, and (€/6) Azzz are omitted. With these adjustments,
2

to make the two equations consistent, A may take
A=ty
In turn, n yields -

3¢ € _
M+ Mz + F2_777?:r: + Enz:z:c =0.

Let us take the following transformation of coordinates

t—se i, zoz—(1—€t (3.3.31)
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Physically, this transformation puts the observer on a moving reference frame
which moves at a speed equal to (1 — €)\/gH to the right. At the same time,
the time is enlarged by e=!. It implies that the physical phenomenon observed

by this moving observer is going to be in a state of very fast motion. Equation
(3.3.30) in the new coordinates becomes

3 1
m+n:+ 571'7.1: + '6'77:::5: =0: (3332)

This is the so called Korteweg-de Vries equation (KdV in short) in terms of
dimensionless variables. When it is expressed by dimensional quantities, the

KdV becomes

. s 3VeH L, 1 .
W+ VOB + 3 FH VIHT g = 0. (3.3.33)

From Example 2 of section 3.3.1., we know that the linear KdV equation
of (3.3.30) admits waves traveling only in one direction. So does the nonlinear
KdV. The accuracy of the dimensional KdV (3.3.33) to serve as a model equa-

tion is discussed in an excellent paper by Hammack and Segur (1974). Their
conclusion is that

the Korteweg-de Vries equation appears to provide an accurate model
for determining the evolution from various set of initial data of grav-
ity waves of moderate amplitude propagating in one direction in a
non-dissipative or slightly dissipative fluid of uniform depth.

There is another derivation of the Korteweg-de Vries equation shown in
Appendix C, which is more systematical and possesses clear physical meanings.
Before we go to the next subsection, let us examine some conservation
quantities. We do our inspection on a little faster moving reference frame than

that defined by (3.3.31) for the KdV (3.3.32). This new frame is arranged in
the following way:

t—= —t, z—z—2)M. (3.3.34)
Then, the KdV (3.3.32) in this new reference frame becomes
3 1
e + ’\Th: = ETIT?J: = Enr::n: = 0. (3335)

Recall that in Chapter 2 we called the PDE
p+g:=0, —oco<z,t<o0, g(koo)=0 (3.3.36)

a conservation law because the mass ffow p(z,t) dz is a constant (i.e., conserved
in time). It has been proved that the KdV (3.3.35) or (3.3.32) has infinitely
many conservation laws. Namely, there are infinitely many quantities associ-
ated with (3.3.35) or (3.3.32) which are conserved during the motion of the
fluid. The reader may see Whitham’s book (p. 600) for more details. Not all
the conserved quantities have physical meaning. But, the first few quantities
have clear physical meanings such as mass, momentum, and energy.
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It is straightforward to derive the following from the KdV (3.3.35):

m + [An - 42172 - %nm]x =0, (3.3.37)
(%n’*)c + [’\—gi - %rﬁ - %rmu + %nﬁ]r =0. (3.3.38)
Since
N(£00) = 7z (£00) = Nay(400) = Nyyy(oo) = Nzzex(£00) = 0,
we have
- f T T T S mass), (3.3.39)
o
M= / n?(z,t) dz = const
- (conservation of momentum). (3.3.40)
Exercise: Derive the conservation law like (3.3.37) and (3.3.38) for the

mechanical energy for the KdV (3.3.35) equation.

3.3.3 Solutions to Korteweg-de Vries equations
Consider the KdV equation

Ut + Mg + 20Uty + fliger =0, —0o < z, 1< oo (3.3.41)
where A\, & and 3 are real constants. We look for its traveling solutions. Let
=z —ct, u=ulf). (3.3.42)

Then
(A =c)u' + 2auu’ + Bu’ = 0. (3.3.43)

The first integral of (3.3.43) gives
A=cutau® +pu" +C =0 (3.3.44)

where C' is the integration constant. Multiplying both sides of (3.3.44) by u’
and integrating it, we can integrate one order further to obtain:

%(z\~c)u2+§—u3+§(u')2+0u+D=(] (3.3.45)
where D is the integration constant. So
C 3D
§§ (W) =—u® = 2 (A=) u? - 3? u=22 = p(u) (3.3.46)
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If B/ > 0, then solutions of (3.3.46) fall into one of the following three cases.

Case (i). If P(u) = 0 has three distinct real roots, then (3.3.46) has a cnoidal
wave solution. In this case, we write (3.3.46) in the form

g g (u')2 =(ri—u)(u— ra)(u—ra), r > ry > 3. (3.3.47)

Let v=wu—ry ¢ = ((20)/(98))'/2 €, then it can be written as

1 /dv\?
3 EE =v(s1—v)(v— s +s2) , 0< sy < sy (3.3.48)
where
81 =ry—r3>0, 8 =r1i—r3>0, s3> s (3.3.49)

The solution of the differential equation (3.3.48) can be expressed by a
Jacobi elliptic function

3
v = s;cn? %c. (3.3.50)
This is a periodic function of C. Its wave length is
A 4 K(m) 3.3.51
= m e
e ( )

where m = /£ < 1is called the modulus of the Jacobian elliptic function,

and K(m) is the complete elliptic integral of the first kind

K(m) = f: Bl (3.3.52)

1 —m2sin?¢

Example: In equation (3.3.46), suppose that
a=-9 g=-2 A—c¢ =6, C=-6, D=0.

Then, equation (3.3.46) becomes

()" = u(2 - u)(u—2+3). (3.3.53)

o =

So
u = 2cn® (gr) ; (3.3.54)

4 2
A= 3K (\/;) N 2T, (3.3.55)

The graph of the function (3.3.54) is shown in Fig. 3.5.

Its wave length is
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2 4 6 C

Figure 3.5: Cnoidal waves

Case (ii). If P(u) = 0 has a real double root, rq, and ro is smaller than the
third real root r, then (3.3.46) has a solitary wave solution. What we mean by
a solitary wave solution of (3.3.46) is that

lim u(z)=0 (or denoted by u(+c0) =0).

|z| =00

In this situation, ry = 7,7 = r3 = rg,51 =1 —ro > 0 and sg = r — 710 = 51,
and equation (3.3.47) becomes

%(%)gzgul_ﬂ_ (3.3.56)

This equation can be directly integrated by using techniques in elementary
calculus:
2 331
v = sysech TC (3.3.57)

Example: In (3.3.46), assume

(see Fig. 3.6).

ﬂ:—é,a:*%,A—c<m c=D=0.
Then
%@nzz—ﬁ_zumquz (3.3.58)
and
u = 2(c— A)sech? %@—AM. (3.3.59)

This example comes from a fluid mechanical model of near critical flow of water
in a two-dimensional channel.
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0 g

Figure 3.6: Solitary wave solution of the KdV.
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Figure 3.7: Regions of unbounded, cnoidal and solitary waves.
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Case (ii1). If P(u) = 0 has complex roots (There must be two complex roots.
Why?), or if P(u) = 0 has a double real root which is larger than the third real
root, then (3.3.46) does not have bounded solutions.

The above classification is shown in Fig. 3.7.
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Chapter 4

Scattering and Inverse
Scattering

For a given potential, the scattering method has been commonly used to find
the wave functions in quantum mechanics. An inverse process of this scattering
is to find the potential from known scattering data. Such a process is called
the inverse scattering method. If the potential satisfies a nonlinear evolution
equation (the differential equation u; = Ef[u], where E is a nonlinear time
independent operator), sometimes there exists a linear operator whose potential
is u(z,t) such that the spectrum of the linear operator is independent of time
t. Hence the inverse scattering method can generate solutions to the nonlinear
evolution equation by solving linear problems. This remarkable method that
solves nonlinear evolution equations was invented by Kruskal, Greene, Gardner
and Miura (1967), and it was first applied to find soliton solutions of an initial
value problem for the Korteweg-de Vries equation. Later it was applied to
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