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Ring Dark Solitons and Vortex Necklaces in Bose-Einstein Condensates
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We introduce the concept of ring dark solitons in Bose-Einstein condensates. We show that relatively
shallow rings are not subject to the snake instability, but a deeper ring splits into a robust ringlike
cluster of vortex pairs, which performs oscillations in the radial and azimuthal directions, following the
dynamics of the original ring soliton.
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directions. All these dynamical features are drastically being on the same order of smallness.
Intensive studies of Bose-Einstein condensates (BECs)
[1] have drawn much attention to the dynamics of non-
linear excitations such as bright [2] and dark [3–5] sol-
itons. In particular, dark solitons in BECs were studied in
detail [6], and it was found that they are subject to
dynamical and thermal instabilities [7]. The experimen-
tally observed dynamical instability [4] is due to their
quasi-1D character: when embedded in a higher dimen-
sion, a dark-soliton stripe becomes unstable against
transverse snaking [5,8].

Transverse perturbations of dark solitons were exten-
sively studied in nonlinear optics (where such solutions
exist in the case of defocusing nonlinearity) [9]. Since the
wave number band of the snake instability is limited by a
maximum wave number Qm, the instability can be sup-
pressed by bending a soliton stripe to close it into an
annulus of length L< 2�=Qm. The resulting ring dark
solitons (RDS’s, i.e., annular troughs on a uniform back-
ground), first introduced in Ref. [10], were studied in
optics theoretically [11] and experimentally [12]. Note
that bright solitons are unstable to collapse in higher
dimensions [9], which also pertains to bright ring-shaped
structures.

In this Letter, we introduce the concept of RDS in
BEC, as a novel class of solitons which can be experi-
mentally created by means of known phase-engineering
techniques [12,13]. A principal difference from optics is
that the RDS dynamics in BEC is temporal, while in
optical media it is of the spatial type [10]. Physical means
available to control BEC, such as dc and ac magnetic
fields, are also completely different from those employed
in optics. Using the perturbation theory [14] and simu-
lations, we demonstrate that shallow RDS’s in BEC are
long-lived objects, that may be observed experimentally
on a relevant time scale. On the contrary, deep RDS’s are
subject to snake instability, splitting into ring-shaped
vortex arrays (‘‘vortex necklaces’’) that, eventually, re-
duce to four vortex-antivortex pairs, which perform ro-
bust double-oscillatory motion in radial and azimuthal
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different from those known in optics, showing that the
concept of RDS comprises a much broader range of
behaviors than it was known previously. Moreover, we
establish a link of RDS in BEC to ring fluxons in large-
area Josephson junctions [15,16].

The evolution of the BEC is governed by the Gross-
Pitaevskii equation with a trapping potential V�r� [1]. We
consider a disk-shaped trap of the form V�r; z� �
m�!2

rr
2 �!2

zz
2�=2, where r2 � x2 � y2, m is the atom

mass, !r;z are the confinement frequencies in the radial
and axial directions, and � � !r=!z � 1. Then, follow-
ing Refs. [17], one can derive an equation for a normal-
ized mean-field wave function u�t; r�:

iut � ��1=2�r2u� juj2u� �1=2��2r2u: (1)

We seek for solutions to Eq. (1) describing rings of
lower density on a background, which is described by the
Thomas-Fermi (TF) approximation. For Eq. (1), the latter
is u0 �

��������������������������������
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exp��i�t�, where � is the

chemical potential. As � is small, we can define a region
where the trapping potential is much smaller than �, then
u0�r; t� 
 �

����
�

p
� �1=4

����
�

p
���r�2
 exp��i�t�. To describe

the dynamics of RDS on top of the background u0, we
look for a solution of Eq. (1) in the form u �
u0�r; t���r; t�, where the complex field ��r; t� will intro-
duce the ring soliton. For � � 1, the most interesting
case is when the radius of the ring is large enough, so that
1=r � O���. In this case, upon redefining t ! �t, r !����
�

p
r, Eq. (1) leads to an effective perturbed nonlinear

Schrödinger (NLS) equation,

i�t � �1=2��rr � �j�j2 � 1�� � P���; (2)

where P stands for the effective perturbation,

P��� � ��1��1� j�j2��W�r� � �1=2�W0�r��r
�

����
�

p
�2r��1�r
;

with W�r� � ��r�2=2, all terms in the perturbation P
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FIG. 1. Evolution of a ring dark soliton (RDS) with R�0� �
28:9 and cos’�0� � 0:6. (a),(b) The initial profile shown by
cross-section and gray-scale density plots, where RDS corre-
sponds to a gray ring. (c) RDS shrinks to the minimum radius
(at t � 40). (d) Beginning of the emission of dark concentric
rings (at t � 160).
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We apply the perturbation theory for dark solitons [14]
to Eq. (2). We start with the unperturbed dark-soliton
and seek for a ringlike solution to Eq. (2) as ��r; t� �
cos’�t� � tanh�� i sin’�t�, where � � cos’�t��r� R�t�
,
and ’�t� and R�t� are slowly varying phase �j’j<�=2�
and radius of the ring soliton. It is straightforward to
derive perturbation-induced evolution equations:

d’
dt

� �
cos’
2�

dW
dR

�
cos’
3

����
�

p
R
;

dR
dt

� sin’: (3)

Combining these, we arrive at an equation of motion for
the RDS radius:

d2R

dt2
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in which we set � � 1, as � can be eliminated from
Eqs. (3) by the transformation t !

����
�

p
t, � !

����
�

p
�.

In the limiting case of a plane soliton, R ! 1, and with
cos’ 
 1, Eq. (4) reduces to an equation of motion for the
soliton’s radius, d2R=dt2 � ��=2�R � 0, which recovers a
known result for a quasi-1D dark-soliton in a parabolic
potential [6]: it oscillates in a harmonic trap with the
frequency �=

���
2

p
. On the other hand, in the absence of the

trapping potential V and for an almost black (deepest)
soliton, Eq. (4) demonstrates that the curvature-induced
effective potential is U � ��1=3� lnR, which recovers a
result known in the context of nonlinear optics [10]. In the
present case, a combination of the trapping potential and
ring curvature gives rise to an effective potential well for
the soliton’s radial degree of freedom, ��R� � �1=2� �
��R�2 � �1=3� lnR, that resembles oscillations of a circu-
lar sine-Gordon (sG) kink in an axially symmetric anti-
trap potential, which is possible in large-area Josephson
junctions [16] (without the antitrap potential, the circular
sG kink periodically collapses and bounces back, form-
ing an extremely robust pulson [15]).

The above consideration shows that RDS’s can be found
in BEC both as oscillating rings and stationary ones,
trapped at the bottom of the potential well ��R�, i.e.,
with the radius R0 � ��1

��������
2=3

p
. For the oscillatory states,

the points Rmin and Rmax between which R�t� oscillates
can be found, using Eqs. (3) to eliminate sin2’:
Rmin;max � ���2=3�w�k; ��
1=2��1, where w�k; �� is the
Lambert’s w function defined as the inverse of ��w� �
w exp�w� [18], the integer k is the branch number of
the function (k � 0 and k � �1 correspond to Rmin and
Rmax, respectively), and � � �3W�R�0�
 cos6’�0� �
expf�3W�R�0�
g.

The possible existence of the stationary and oscillating
ring solitons is specific to BECs, where they are supported
by the trapping potential, while their counterparts in non-
linear optics expand indefinitely [10]. Stability of the ring
solitons, trapped at or around R � R0, against transverse
perturbations should be tested in direct simulations.

We integrated Eq. (1) numerically, with an initial con-
figuration (IC)

u�r; 0� � �1��2r2=4��cos’�0� tanhZ�r� � i sin’�0�
;
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where Z�r�� �r�R0�cos’�0�, ��0:028, R0�28:9, and
cos’�0� is the depth of the input soliton. The cases of
oscillating and stationary RDS can be considered, taking
cos’�0��1 and cos’�0��1, respectively. Simulations
verify that both oscillating and stationary RDS’s exist,
and their dynamics can be effectively described by Eq. (4),
up to a certain time. Then, instabilities develop: RDS
either slowly decays into radiation [for cos’�0�<0:67],
or, for cos’�0��0:67, snaking sets in, leading to forma-
tion of vortex-antivortex pairs arranged in a robust ring-
shaped array (vortex cluster).

To illustrate these generic scenarios, we first take the
case with cos’�0� � 0:6 and sin’�0� � �0:8. The corre-
sponding initial structure is shown in Figs. 1(a) and 1(b).
According to the analytical results, in this case RDS is
expected to oscillate with the period T � 240 between
widely different limits, Rmin � 3:8 and Rmax � 69:7, the
latter being almost at the rim of the BEC cloud, whose TF
radius is 
 70. It is indeed observed that RDS initially
shrinks, attains the maximum contrast at R � Rmin

[Fig. 1(c)], and bounces back. After reaching Rmax and
bouncing from it, RDS starts to emit radiation in the form
of shallow concentric dark rings, as shown in Fig. 1(d).
Because of the radiation loss, RDS becomes shallower
and, as a result, it accelerates, decreasing the period of
the oscillations. We observed that RDS performed at least
three complete cycles of the oscillations before final
decay, which occurs at t 
 400. Qualitatively, this dy-
namical instability resembles that of a stripe (rectilinear)
dark-soliton in BECs [7].
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FIG. 2. Evolution of RDS with R�0� � 28:9 and cos’�0� �
0:76. (a) Spontaneous undulations developed on the ring at t �
60. (b) Four vortex pairs are formed, at t � 70.

FIG. 3. Evolution of four vortex pairs created by the instabil-
ity of RDS from Fig. 2 for (a) t � 120, (b) t � 240, (c) t � 420,
and (d) t � 540. The vortex pairs remain on the ring and move
along it, so that the configuration oscillates between the x- and
�-like configurations, while the ring itself periodically shrinks
and expands between Rmin and Rmax.

P H Y S I C A L R E V I E W L E T T E R S week ending
28 MARCH 2003VOLUME 90, NUMBER 12
To translate the results into units relevant to the experi-
ment [3,4], we assume a 87Rb condensate of radius
30 �m, containing 20 000 atoms in a disk-shaped trap
with !r � 2�� 18 Hz and !z � 2�� 628 Hz. In this
case, the RDS considered above has the radius R0 �
12:4 �m, it starts to emit radiation at t 
 40 ms, and
finally decays at t � 100 ms. This time scale is much
larger than the lifetime of the dark stripe observed in
Refs. [3,4], hence moderately shallow RDS’s can be ob-
served too.

Deep RDS’s develop the snake instability, which results
in the formation of vortex pairs in multiples of four,
namely 4 [for 0:67 � cos’�0�< 0:8], 8 [for 0:8 �
cos’�0�< 0:9], 12 [for 0:9 � cos’�0�< 0:95], or 16 [for
0:95 � cos’�0� � 1]. Originally, all the pairs are set
along a single ring, creating a necklacelike structure.
The subsequent evolution of the necklaces is character-
ized by a transient stage, when quartets of pairs are suc-
cessively expelled off the necklace, drift inward to the
center of the condensate and disappear there. Eventually,
there remains a pattern consisting of precisely four vortex
pairs. They are arranged along a ring that slowly oscil-
lates between Rmin and Rmax, i.e., the same limits between
which the initial RDS oscillated prior to the onset of
the instability. Simultaneously, the vortices and antivor-
tices perform an oscillatory motion along the ring, so that
the configuration periodically switches between x- and
�-like shapes.

The robust necklace patterns consisting of vortex
pairs resemble stable clusters of globally linked vortices
(of one sign, rather than of the vortex-antivortex type)
that were recently found in a 2D BEC model [19]; how-
ever, the number of vortices in those clusters could be
arbitrary (at least, 2, 4, and 8). Another similar object are
necklace soliton clusters in nonlinear optics, which, how-
ever, are not stationary, gradually expanding [20] or
rotating [21].

The double-oscillatory state persists for long times,
typically up to t 
 2000 (which is 
 500 ms for the
typical case specified above); still later, due to significant
distortion of the condensate as a whole, all the vortex
pairs annihilate. To illustrate these scenarios, we display
two cases, which correspond to situations where the in-
stability initially creates the minimum (4) or maximum
(16) number of vortex pairs.

First, we consider RDS with cos’�0� � 0:76 and
Rmin � 8, Rmax � 58. This IC is very similar to that in
Fig. 1(b). It initially shrinks and attains R � Rmin [as in
Fig. 1(c)]. After bouncing and subsequently expanding to
the rim of the BEC cloud, it starts snaking [see Fig. 2(a)],
which is a precursor of splitting. Finally, it splits into four
vortex pairs; see Fig. 2(b). The persistent quartet of the
pairs arranges itself in a ring configuration. The ring
performs slow radial oscillations between Rmin and Rmax

with a period T 
 400 (
 100 ms) up to t 
 2000.
Simultaneously, the vortices and antivortices move along
the ring, so that they form an x-like configuration at R �
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Rmax [Fig. 3(a)], then an octagon [Fig. 3(b)], and then a
�-like pattern. As is seen in Fig. 3(c), the latter one
shrinks to R � Rmin, then it bounces and expands, attain-
ing R � Rmax [Fig. 3(d)], and evolves into the x-like
pattern, and then the cycle repeats itself.

Finally, we consider the evolution of a black ring soli-
ton, with cos’�0� � 1, which, according to the analytical
prediction, is expected to be stationary [the correspond-
ing initial state looks similar to that shown in Fig. 1(b)].
First, this configuration indeed remains stationary. How-
ever, Fig. 4(a) shows that, at t � 40 �
 10 ms�, the ring
starts to snake, which ends up with formation of a
necklace array of 16 vortex pairs along the ring R �
R0; see Fig. 4(b). The subsequent evolution of the
necklace results in annihilation of eight pairs, which
120403-3



FIG. 4. Evolution of an original stationary ring soliton with
cos’�0� � 1 and R�0� � R0 � 28:9. The initial configuration
remains undistorted up to t � 40. (a) Undulations of RDS at
t � 40. (b) Sixteen vortex pairs, formed by t � 60 as a result of
the snake instability. Further snapshots are shown for (c) t �
240 and (d) t � 760. The initial set of 16 vortex pairs reduces
first to 12, then to 8, and eventually to 4 pairs, through
successive annihilations. Four surviving vortex pairs stay at
r � R0, oscillating between the x- and �-like patterns.
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occurs in two steps. At first, four pairs drift inward, where
they disappear [Fig. 4(c)], leaving a nearly rectangular
array of 12 vortex pairs. Next, the 12-pair pattern ex-
punges two quartets of vortex pairs. One quartet again
moves inward and disappears near the center, the other
one drifts outward, while four vortex pairs stay at R �
R0; see Fig. 4(c). Then, the four outward-moving vortex
pairs bounce from the rim of the condensate and move
back inward, past the quartet that stays put at R � R0,
and eventually disappear at the center. Thus, there re-
mains a pattern consisting of four vortex pairs, which
still reside at R 
 R0; see Fig. 4(d) (due to the overall
distortion of the condensate at this late stage of the
evolution, R0 was properly adjusted). The vortices and
antivortices from these pairs move along the ring, so that
the configuration performs very slow oscillations be-
tween the x- and �-like shapes. We have observed almost
three complete cycles of such oscillations with the period
T 
 500 �
 125 ms�.

In conclusion, we have introduced the concept of ring
dark solitons in Bose-Einstein condensates, and pre-
dicted the existence of both oscillatory and stationary
solitons. Simulations show that perturbation theory accu-
rately describes the unperturbed RDS dynamics. How-
ever, instabilities gradually set in and, as a result, shallow
RDS’s slowly decay, while deeper ones develop the snake
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instability. In the latter case, a necklace array consisting
of vortex-antivortex pairs appears, the number of pairs
being a multiple of 4. Eventually, it relaxes to a set of four
pairs which sit on a ring oscillating in the radial direction
between the same limits which confined the oscillations
of the original RDS; simultaneously, the pairs perform
oscillatory motion along the ring.
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