HW#5 — Nonlinear Waves

1. The aim of this exercise is to find a simple wave equation PDE model that propagates a *kink* solution with constant velocity and shape. The wave we are after looks like (left panel):

The method consists on defining a potential that generates a *heteroclinic* orbit connecting $\mp a$ with $\pm a$.

- a) Consider the quartic potential V(f) depicted on the right plot above.
 - i) Sketch the phase portrait associated with V(f).
 - ii) Sketch all the qualitatively different orbits associated with V(f).
 - iii) Find the simplest quartic potential that satisfies the sketch in the right panel. Namely, find the coefficients A and B such that $V(f) = -f^4 + Af^2 + B$ passes through the particular points (with the right slopes) depicted in the right panel.
- b) Consider now a particle of mass m = 2 subject to the potential V(f) found in a.iii).
 - i) Write the equation of motion using Newton's law (mf'' = -dV/df) for a particle of mass m = 2 at position f and time ξ under the potential V(f) (i.e. f plays the role of x and ξ the role of t).
 - ii) Differentiate this equation with respect to ξ to obtain a third order differential equation for f. Write a wave equation for $u(x,t) = f(\xi) = f(x ct)$ with $c = 2a^2$ that leads to this third order differential equation for $f(\xi)$. Describe the terms you obtain (dissipation, dispersion, nonlinearity, etc..).
- c) Now that you have the equation from b.ii), apply a similar analysis to the one done in class to obtain a kink solution connecting $u(-\infty, t) = -a$ and $u(+\infty, t) = +a$. Namely, you'll now check that the PDE you constructed does indeed support traveling kinks (as in the left panel of the figure). [Hint: every time you integrate w.r.t. ξ there is a constant that has to be determined by the boundary conditions. This is crucial to get the right solution. What are the boundary conditions for $f''(\pm\infty)$ and $f'(\pm\infty)$ and $f(\pm\infty)$?].
- d) Check that the solution you obtained in c) does solve the wave equation obtained from b.ii).
- 2. The aim of this exercise is to find approximate plane wave solutions to the KdV equation

$$u_t + 6uu_x + u_{xxx} = 0. (1)$$

- a) Suppose that $u(x,t) = f(\xi) = f(x vt)$ is a traveling wave solution for the KdV equation (1). Following the lecture notes, obtain a Newton's law-like equation for $f(\xi)$. Keep the integration constant intact in order to obtain the most general solution.
- b) For this Newton's law-like equation, find the fixed points and study their stability. Perform a perturbation analysis around the neutrally stable fixed point f^* . Namely, consider $f(\xi) = f^* + \varepsilon g(\xi)$ with $|\varepsilon| \ll 1$. Write the differential equation for $g(\xi)$.
- c) Suppose ε is small enough to neglect nonlinear terms. Write the linearized differential equation for $g(\xi)$ and solve it. Use this to find the oscillatory solution for f about the fixed point f^* . Write the approximate evolution for these waves.

- d) Use KdV.m to integrate the approximate plane wave solution obtained in c) with amplitude=0.01 and v = 2 and the integration constant(s) equal to zero for $(x, t) \in [0:3]$ wave periods |x| = [0:5]. Show all your plots. Does the wave evolve as expected (shape- and velocity-wise)? Perform the same simulation with amplitude=0.1 and amplitude=0.5. Notice any difference? Comment on your results. [Note: if the codes goes unstable (i.e. loads of spikes forming) reduce the time step size dt.]
- 3. Consider the two-dimensional KdV equation:

$$(u_t + 6uu_x + u_{xxx})_x + 3u_{yy} = 0. (2)$$

a) Show, using the traveling wave approach, that the two-dimensional KdV equation has the solitary wave solutions of the form:

$$u(x,t) = \frac{k^2}{2}\operatorname{sech}^2\left[\frac{1}{2}(kx + ly - \omega t)\right],$$

with $\omega = k^3 + 3l^2/k$.

b) Describe the evolution of such a solitary wave. What does it represent?