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Discrete solitons and vortices on anisotropic lattices
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We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices,
using the discrete nonlinear Schrodinger equation as a paradigm model. For fundamental solitons, we develop
a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly
anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the
fundamental solitons and simplest on-site-centered vortex solitons (“vortex crosses”) feature enhanced or
reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy
on the so-called “super-symmetric” intersite-centered vortices (“vortex squares”), with the topological charge
S equal to the square’s size M: we predict in an analytical form by means of the Lyapunov-Schmidt theory, and
confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and
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dynamics in comparison with the degenerate, in this case, isotropic, limit.
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I. INTRODUCTION AND THE MODEL

In the past two decades, nonlinear lattice (spatially dis-
crete) systems have been a very rapidly growing area of in-
terest for a variety of applications [1]. Such systems arise in
physical contexts encompassing, infer alia, beam dynamics
in coupled waveguide arrays in nonlinear optics [2], the time
evolution of fragmented Bose-Einstein condensates (BECs)
trapped in optical lattices (OLs) [3], coupled cantilever sys-
tems in nanomechanics [4], denaturation of the DNA double
strand in biophysics [5], and even stellar dynamics in astro-
physics [6].

One of the main objectives of the research in this field is
to achieve an understanding of intrinsically localized states
(discrete solitons). In two-dimensional (2D) lattices, these
are fundamental discrete solitons [7] and discrete [8] or qua-
sidiscrete [9] vortices. Vortices are characterized by a non-
zero phase circulation, A¢, over a closed lattice contour
around the center of the vortex, which must be a multiple of
24r. The vorticity (alias topological charge of the vortex) is
then defined as S=A¢/(27). Most recently, a substantial ef-
fort was dedicated to the experimental creation of discrete
solitons and vortices in photonic lattices induced in photore-
fractive crystals (although these systems are only quasidis-
crete). In particular, fundamental and dipole solitons, soliton
trains and necklaces, and vector solitons have been reported
[10], as well as vortex solitons [11]. Parallel developments in
the experimental studies of soliton patterns in BECs have
also been very substantial, leading to the creation of

*URL: http://nlds.sdsu.edu/
fURL: http://www.csrc.sdsu.edu/

1539-3755/2005/72(4)/046613(9)/$23.00

046613-1

PACS number(s): 05.45.Yv, 03.75.—b, 42.65.Tg

quasi-1D dark [12], bright [13], and gap [14] solitons. The
generation of 2D BEC solitons in OLs has been theoretically
demonstrated [15] to be feasible with the currently available
experimental technology [16].

A paradigm dynamical lattice model that appears in the
above-mentioned physical problems is the discrete nonlinear
Schrodinger (DNLS) equation. Various applications of the
DNLS equation are well documented [1-3]. Besides being a
generic asymptotic form of a whole class of lattice models
(for small-amplitude nonlinear excitations), it finds direct ap-
plications (where it furnishes extremely accurate description
of the underlying physics) in terms of arrayed (1D) or
bunched (2D) nonlinear optical waveguides, BECs trapped
in strong OLs, and crystals built of optical or exciton micro-
cavities.

An interesting issue in this framework that has not re-
ceived sufficient attention is the influence of anisotropy,
which may be induced by a feasible difference in the cou-
pling strengths along the two lattice directions, on the soliton
dynamics in 2D lattices. Some of the settings mentioned
above are inherently anisotropic, e.g., photorefractive crys-
tals [7,10], while others (in particular, the fragmented BECs
trapped in strong OLs [3]) can be easily rendered anisotropic
by obvious variations of experimental parameters, such as
the intensities of laser beams that create two sublattices
which together form the 2D optical lattice.

The aim of this paper is to understand how the lattice
anisotropy affects 2D discrete solitons in the DNLS equa-
tion. Some findings reported below are surprising, demon-
strating that anisotropy effects are not straightforward. The
straightforward expectation might be that weak anisotropy is
a small perturbation that possibly alters details of parametric
dependences of the observed phenomenology but does not
change it “structurally” (i.e., essentially the same dynamical
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features as in the isotropic lattice occur, but at different po-
sitions in the parameter space). We find that for the simplest
soliton and vortex structures this is indeed the case, while for
more sophisticated ones it is not. More specifically, we find
that for especially symmetric (so-called “supersymmetric”)
vortices, with their center set at an intersite position, and the
topological charge equal to the size of the vortex square
frame (see below for details), the isotropic lattice is a degen-
erate one, therefore even very weak anisotropy fundamen-
tally alters the stability and dynamical properties of such
structures. On the other hand, despite the delicate organiza-
tion of the supersymmetric vortices, they constitute a struc-
turally stable, i.e., physically meaningful, class of objects.
We take the DNLS equation in the following form:

- anu |2un,m s (1)

where u,,,(f) is the complex, 2D lattice field (the overdot
stands for its time derivative), € is the lattice coupling con-
stant, and

122 nm |un,m

nm =

2(1 + @uy,,,
(2)

is the anisotropic discrete Laplacian, which becomes isotro-
pic with a=1. Note that, unlike the continuum limit, no scal-
ing transformation can cast the anisotropic DNLS equation
into the isotropic form. Equation (1) conserves two dynami-
cal invariants: the Hamiltonian,

Aaun,m = a(un+1,m + un—l,m) + Uy m+1 + Upm-1—

# ®
H= 2 |: Uy mi1Unmt+ Mn,m+1un,m) + a(”n+1,mun,m
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3)

and norm,

N= 2 |un,m 2’ (4)
where A is the frequency of a standing wave (equivalently
the chemical potential in the context of BECs or the propa-
gation constant in the context of optical waveguide arrays).
Stationary solutions to Eq. (1) will be sought as

Uy = Uy €XPUIAD), (5)
which leads to a stationary finite-difference equation,
Ay, = €d i), = ) Puy), (©6)

(generally speaking, the discrete functions u(o) may be com-
plex). In the case of fundamental-soliton solutlons we will
apply the variational approximation (VA) to the real version
of Eq. (6), which is based on the fact that it can be derived
from the Lagrangian,

A
2
L= E |:un,m+lun,m + AUp 1 mUpm — <_ -l-a un,m

n,m 2e

| 71 m

+ 41—6144’ ] (7)
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After analyzing fundamental solitons by means of the VA,
we will construct discrete solitons in the anisotropic model
and will study their stability by means of numerical methods.
For the numerical procedure, our starting point is always the
anticontinuum (AC) limit corresponding to €=0 [17], where
configurations of interest can be constructed at will as appro-
priate combinations of on-site states, which are either u,,
=\ Aexp(iAr) with A >0 at excited sites, and u,_,, =0 at non-
excited ones, cf. Egs. (5) and (6) for the general case, €>0.
The stability of the solitons is then analyzed by linearizing
Eq. (1) for perturbations around a stationary solution u® ikt

n, m ’

Uy = [u + &a,, e+ by e N ]et™, (8)

where J is an infinitesimal perturbation amplitude of the per-
turbation, and \ is its eigenvalue. The Hamiltonian nature of
the system dictates that if \ is an eigenvalue, then so are also
-\, N\, and —\" (in the stable case, \ is imaginary, hence this
symmetry yields only two different eigenvalues, N and —\).
Clearly, the stationary solution is unstable if at least one pair
of eigenvalues features nonvanishing real parts.

It is noteworthy that the instability against perturbations
corresponding to purely real eigenvalues X\ in Eq. (8) can be
predicted by the Vakhitov-Kolokolov (VK) criterion [18]: a
soliton family, characterized by the dependence N(A) [recall
N is the solution’s norm defined by Eq. (4)], may be stable
under the condition dN/dA >0, and is definitely unstable in
the opposite case. In particular, this criterion (as well as the
VA) was found to be very useful and quite reliable in the
investigation of 2D solitons in the Gross-Pitaevskii equation
for BECs in 2D and quasi-1D periodic OL potentials [19],
and even in 2D quasiperiodic potentials (such as the Penrose
tiling among others) [20].

Our study of different states in the anisotropic model and
their properties is structured as follows. In Sec. II, we present
the VA for fundamental solitons. In Sec. III, discrete solitons
and vortex crosses with the topological charge S=1 are con-
sidered, which are only perturbatively (weakly) affected by
the anisotropy. In the following two sections, we will define
and consider special “supersymmetric”’ configurations, with
S=1 and S=2, respectively, and compare them with simpler
cases. Finally, in Sec. VI we summarize the findings and
present our conclusions.

II. VARTIATIONAL APPROXIMATION
FOR FUNDAMENTAL SOLITONS

As was shown in Ref. [21] for the one-dimensional DNLS
equation (see also Ref. [22] for a more rigorous variational
approach applied to higher-dimensional solitons in the iso-
tropic case), the only analytically tractable variational ansatz
for stationary fundamental solitons may be based on the fol-
lowing cusp-shaped expression (in the 2D case, it has the
shape of a cross cusp),

O

I’l m

blm]), )

with positive parameters a and b that determine the widths of
the soliton and an arbitrary amplitude A. Note that expres-
sion (9) is indeed an exact solution to the linearized version
of Eq. (6), which describes soliton tails, if A is linked to a
and b by the dispersion relation,

=Aexp(-aln| -
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A =2¢€ @ sinh*(a/2) + sinh*(b/2)]. (10)

The substitution of ansatz (9) makes it possible to calcu-
late the corresponding effective Lagrangian explicitly. First
of all, it is convenient to eliminate the amplitude in favor of
the norm (4). Indeed, the substitution of the ansatz in the
definition of N yields AZ=N tanh a tanh b. After this, the ef-
fective Lagrangian becomes

A
Lese= N(a sech a + sech b) — (2— +1+ a)N
€

N? cosh(2a)cosh(2b)sinh a sinh b
t 3 3
16€ cosh’(a)cosh”(b)

(11)

Variational equations for the stationary profile are then ob-
tained in the form

ILtt _ ILst _ ILeg¢ _
ION da db

0. (12)

In the general case, the explicit form of these equations is
quite cumbersome (this will be treated numerically, see be-
low). A detailed analysis is possible in two special cases, as
specified below.

First is the case of small a and b (a,b<<1), which implies
broad solitons. Then, the expansion of the effective Lagrang-
ian (11) yields

A 1 ) , 5 4 Sa,
Ly=—-—N+-N\-b"—aa”+—b"+——a
2e 2 12 12

N 2, 2 .
+—\ab+=a’b+—ab’ |, (13)
16€ 3 3

and the variational equations (12) following from Eq. (13)
generate the following solution:

— Ta+1A
N=16eVall-— -, (14)
8 a €
A
a?=—, b=\/aa. (15)
Qex

As follows from these expressions, the underlying assump-
tions a,hb<<1 indeed hold (i.e., the approximation is self-
consistent) under the condition

ae fa=1,
A< . (16)
e ifa>1.

The broad (quasicontinuum) solitons predicted in this ap-
proximation are unstable according to the VK criterion, as
Eq. (14) immediately shows that dN/dA <O0.

Note that the expansion of the dispersion relation (10) for
the same case of small a and b yields aa®+b*=A/e. It is
noteworthy that this relation, although derived independently
of the variational equations, is consistent with Eq. (15).

Another tractable case is that of a strongly anisotropic
soliton, which is broad (quasicontinuum) in either direction
and narrow in the other, i.e., it corresponds to a<<1,b>1, or
vice versa. If a is small and b is large, the variational equa-
tions (12) yield the following results:
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| A b A 4
a=\7—. smh(—>=‘v[:, N*=—eah. (17)
3ae 2 € 3

These results are consistent with the underlying assumptions
(a<<1,b>1) under the conditions

1< ANe<a. (18)

Contrary to the broad solitons given above by Egs. (14) and
(15), Egs. (17) show that the anisotropic solitons are stable
as per the VK criterion, as they obviously meet the condition
dN/dA>0.

For the opposite strongly anisotropic case, with a>1 and
b<<1, the result is

[A [ A 4
b=~\/—, sinh(c—l)z —, N’=—€A, (19)
3e 2 ae€e 3

cf. Egs. (17). These expressions comply with the underlying
assumptions a>1,b<<1 provided that

a<Ale<l1, (20)

cf. Eq. (18). Similarly to the solution of Eq. (17), the one of
Eq. (19) obviously meets the VK stability criterion.

Lastly, inequalities (18) and (20) imply that the above
solutions indeed pertain to the strongly anisotropic model, as
the corresponding parameter « is large in the former case
and small in the latter one. We also notice that the condition
(18) in the case of large a, or its counterpart (20) in the
opposite case of small «, is incompatible with the respective
condition (16), i.e., (as one would expect), the existence re-
gions of the unstable quasicontinuum solitons and stable
strongly anisotropic ones have no overlap.

For general a and b, the variational equations (12), with
the effective Lagrangian (11), cannot be solved explicitly and
one has to find (N,a,b) solutions numerically for each (e, A)
pair. In Fig. 1, we compare the results obtained from the VA
with solutions obtained through numerically solving the sta-
tionary equation (5). Figure 1(a) depicts the norm of the
soliton solutions as a function of the propagation constant A
for several values of the anisotropy parameter « and for con-
stant coupling (e=1). As may be noticed from the figure, the
VA (thin lines) provides a good approximation to the actual
solution (thick lines). We also checked the stability of the
constructed solutions by following the largest real eigenvalue
(see also details below) of the linearized problem defined in
Eq. (8). Stable solutions are depicted with solid lines while
unstable solutions correspond to dashed lines. As is clear
from the figure, the slope of N(A) predicts the stability of the
solution according to the VK criterion (see above). Further-
more, since the VA gives a good approximation of N(A), it is
possible to obtain a good estimate for the transition from
stable to unstable solutions, as A is decreased, using the VA
together with the VK criterion. Finally, in Fig. 1(b) we fix
A=1 and perform a similar calculation by varying the cou-
pling strength e. Again, the VA (thin lines) approximates re-
markably well the norm of the solutions (thick lines).
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FIG. 1. (a) Norm of the solution vs A for several values of the
anisotropy and fixed coupling strength e=1. For all the panels in
this figure, the anisotropy values are a=1.5, 1.25, 1, and 0.75, re-
spectively, for each curve from top to bottom. Thick lines (solid and
dashed) represent direct numerical results and thin lines represent
the VA. The dashed lines correspond to unstable soliton solutions.
Note that the sign of the slope of N(A) reflects the stability of the
soliton solutions as predicted by the VK criterion. (b) The norm of
the soliton solution as a function of the coupling strength for fixed
A=1. Once again, thick lines represent direct numerical results and
thin lines illustrate the VA.

III. FUNDAMENTAL SOLITONS AND VORTEX CROSSES:
NUMERICAL RESULTS

We start numerical computations with a single excited site
in the AC limit, and continue the solution in € (for a fixed
value of the anisotropy parameter «). The objective is to
construct regular site-centered discrete solitons, with the an-
ticipation that, as is known for the isotropic model (a=1),
the solitons will be stable up to a critical value of the cou-
pling constant, i.e., at e<e,, [22,23]. At €> €, the discrete
solitons are found to be unstable due to a real eigenvalue
arising in the linearization around the soliton. In the numeri-
cal part of the work (unlike the VA considered above), we fix
A=1 in Eq. (6), using the scaling invariance of Eq. (1), and
examine how €, is affected by the variation of a. The results
will be summarized in the form of two-parameter diagrams
that chart regions of stable and unstable discrete states.

For regular discrete solitons, such a diagram is presented
in Fig. 2. The top panel illustrates the fact that the increase of
a gradually destabilizes the solitons, i.e., €, decreases with
increasing a. Interestingly, the respective dependence is very
well approximated by an empirical relation €,=1/\a. More
accurately, the best fit to this numerical dependence is given
by €,~0.999a "4, The middle panel in Fig. 2 illustrates in
more detail some special cases of this dependence for a=1
(solid lines), a=1.25 (dashed lines), and «a=0.75 (dash-
dotted lines).
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FIG. 2. (Color online) The line in the top panel shows the criti-
cal value of e (the border between stable and unstable discrete soli-
tons) as a function of «; the dashed line is e=1/ Va. The middle
panel shows how the real and imaginary parts of the stability eigen-
value, N\, and \;, depend on € for a=1.25, 1, and 0.75 (dashed,
solid, and dash-dotted curves, respectively). The bottom panel
shows an example of the discrete soliton found for e=1 and «
=1.5.

We note that, in terms of the general equation (1), the
cases of <1 and a>1 are tantamount to each other, as one
may divide the equation by «, mutually rename the vertical
and horizontal indices (n and m), and then rescale the equa-
tion to the form with « replaced by 1/«. However, this trans-
formation is not possible once we fix A =1, which is why we
report results below for both «>1 and a<1.
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For a=1, an eigenvalue bifurcates from the edge of the
continuous spectrum at €~0.445, and with further increase
of € it moves toward the origin of the spectral plane (\,,\;)
(the subscripts denote the real and imaginary part of the ei-
genvalue). It becomes unstable, reaching the origin at e
~1.006. For a=1.25, the first bifurcation occurs at e
=~=().398, and the instability sets in at e=~0.896, whereas for
a=0.75 the respective critical points (the appearance of the
eigenvalue and its passage into the instability region) are
found at e~0.511 and 1.156, respectively. Notice that these
results are quite natural since, as «— 0, the system becomes
nearly one-dimensional, hence we expect the destabilization
point to approach its 1D counterpart. Thus, as the 1D discrete
solitons are well known to be stable up to the continuum
limit, one may expect that €,— for a«—0. The bottom
panel of Fig. 2 shows an example of a discrete soliton for
a=1.5 and e=1. Although the anisotropy is hardly observed
in this case, it can be traced nevertheless; in particular, u;
=0.785 and u,;=0.579.

Similar results can be obtained for on-site vortices (dis-
crete vortex solitons) with the topological charge S=1. In
this section, we consider the solitons in the form of the so-
called “vortex cross,” with ujo=1, ug =exp(im/2)=i,
u_yg=exp(im)=-1, ug_;=exp(i3mw/2)=-i (and uy,=0, at
the central point), excited in the AC limit [8]. There are
interesting variations to this problem, in comparison with the
fundamental soliton. In particular, the respective instability
mechanism is different, as it is caused by an eigenvalue bi-
furcating from the origin in the spectral plane for € # 0, and
eventually (upon parametric continuation) colliding with the
edge of the continuous spectrum (or an eigenvalue bifurcat-
ing from the continuous spectrum). The collision gives rise
to a quartet of eigenvalues, through the so-called
Hamiltonian-Hopf bifurcation [24]. In the isotropic case (a
=1), it is known that this instability sets in at €.~ 0.39 8],
while, in the present anisotropic model, we have found that
€.,~0.325 for a=1.3 and €,=~0.429 for «=0.7. The respec-
tive two-parameter diagram (€, a) is shown in the top panel
of Fig. 3. The cases of a=1.3, 1, and 0.7 (dashed, solid, and
dashed-dotted curves, respectively) are shown in the middle
panel. The bottom panel of the figure illustrates the squared-
amplitude profile of the discrete vortex for a=0.2 and €
=0.5. The sites (1,0) and (0,1) have the squared amplitudes
|u1 0*=1.934 and |u, |*=2.057, respectively. Notice also that
as «—0, a quasi- 1D situation is again approached, where the
so-called twisted-localized mode (TLM) [25] configuration
(alias an odd soliton) is a counterpart of the 2D vortex. As
one would expect, the critical point of the instability departs
from the value egD>%O.39, corresponding to the isotropic
2D case, toward the value corresponding to the stability bor-
der of the 1D TLM solitons, which is e.\” ~0.433.

IV. FUNDAMENTAL VORTEX SQUARES

For the discrete solitons examined so far, the difference
between the isotropic and nonisotropic cases has not been
particularly dramatic; the anisotropy chiefly entailed a
smooth deformation of the instability-onset scenarios known
for the isotropic case. Therefore, the dynamical evolution
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FIG. 3. (Color online) The top panel shows the critical value of
€ separating the stable and unstable discrete vortices (on-site-
centered ones, alias vortex crosses) with S=1 as a function of a.
The middle panel shows how the real and imaginary parts of the
eigenvalue leading to the instability depend on € for a=1.3, 1, and
0.7 (dashed, solid, and dash-dotted curves, respectively). Notice
that, for a=1.3, there is a secondary instability arising for €
>(.455. The bottom panel shows the squared-absolute-value profile
of the discrete vortex for €=0.5 and a=0.2.

triggered by the instability is naturally expected to be similar
to that in previously studied isotropic cases [7-9,23].

Now we will give an example where the instability sce-
nario and dynamics are very different from their isotropic
counterparts. We focus, in particular, on the off-site-centered
vortex (alias “vortex square”) [8,9]. The vortex-square con-
tours are characterized by their size M, which is the number
of lattice bonds that each side of the square contour contains
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in the AC-limit pattern, from which the solution family
stems. Hence, the vortex square based, in the AC limit, on
the set of sites (0,0), (1,0), (1,1), (0,1) is the M =1 contour.
The configuration with S=1 is written on this set by lending
the four sites the phases 0, /2, , and 37/2, respectively.
The persistence of such configurations, as was discussed in
detail in Ref. [26], is determined by whether secular condi-
tions (obtained from the Lyapunov-Schmidt theory [27]), ex-
cluding the projection of eigenvectors in the kernel of the
linearization at e=0 to the solution at finite €, are satisfied. In
the isotropic case, to leading order [O(€)], these secular con-
ditions are found to be

0=£(6) = sin(6,— 6,,,) + sin(6,— 6,_;) (21)

for I=1,...,N (with periodic boundary conditions), where
N=4M is the number of sites participating in the contour and
6, are their respective phases [cf. Egs. (3.1) and (3.2) of Ref.
[26]].

One can then apply similar arguments to the present set-
ting and derive modified persistence criteria for the aniso-
tropic model. For M =1, they are

0=£(6)
{a sin(6,— 6,,,) +sin(6,— 6,_,) [=2k+1,k=0,1,
sin(6— 6,,,) + asin(6— 6_,) [=2kk=1,2.
(22)

While Egs. (22) may seem a moderate modification of Egq.
(21), there is a crucial (for stability purposes) difference.
Indeed, consider the linearization around the S=1 solution
according to Eq. (8). It was proved in Ref. [26] that the
Jacobian matrix of the reduced set of Egs. (22), defined
through J;; =df,/ 36, determines leading-order corrections to
N-1 eigenvalue pairs bifurcating from the origin [one pair
stays at the origin due to the invariance of Eq. (1) with re-
spect to the phase shift], since these eigenvalues satisfy the
equation

N =2eu, (23)

with u; the corresponding eigenvalues of the reduced N
X N Jacobian Jj. Furthermore, it is easy to check that, for
the vortex square with S=1 and M =1, the entire Jacobian
matrix consists of zeros. More generally, as shown in Ref.
[26], this is the case for the square vortices of size M with
charge S=M, which for that reason were termed “supersym-
metric” vortices. Obviously, to determine the stability of the
vortices in this special case, one needs to go to higher-order
expansions. Typically, second-order reductions will yield a
nontrivial result for the stability of such supersymmetric con-
figurations, leading to eigenvalue dependences A, € [rather
than ;o Ve, as dictated by Eq. (23) in the generic case].
The key variation to this theme stemming from the pres-
ence of the anisotropy is that the matrix Jy has generically
nonvanishing elements in the lowest approximation for «
# 1; in other words, the isotropic lattice is a degenerate one
for the supersymmetric solitons, and arbitrarily weak aniso-
tropy lifts this degeneracy. As a result, the eigenvalue bifur-
cations occur, typically, at the leading order, rather than at
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FIG. 4. For the S=1 supersymmetric square vortex (one with the
size M=1), two real eigenvalues are shown as functions of e for
a=1.05. The numerical and analytical results (see text) are dis-
played, respectively, by the solid lines and dashed lines.

the second-order perturbation expansions, which was the
case in the isotropic model. More strikingly, considering a
specific example, such as for «=1.05 (a very weak deviation
from the isotropic case), we find that the relevant angles (in
radians) satisfying the conditions (22) are 6,=-0.0229, 6,
=1.8577, 6;=3.4285, and 6,=4.6895; the corresponding 4
X 4 Jacobian has two zero eigenvalues [one of which will
split to order O(e), see below] and two nonzero ones,
+0.6403. From the existence of the positive eigenvalue and
from Eq. (23), it immediately follows that the S=M=1 con-
figuration is unstable (for all values of €). This is in complete
contrast with the supersymmetric vortex in the isotropic
model, which has two imaginary eigenvalue pairs (bifurcat-
ing at the second-order reduction), A= +2i¢, and is linearly
stable for e<e.~(0.38.

From here, we conclude that the anisotropy can play a
critical role in destabilizing configurations that would be
very robust ones in the isotropic limit. Furthermore, this can
happen arbitrarily close to the isotropic limit (which turns
out to be a very delicate one), given the nature of the argu-
ment presented above. We also note in passing that in the
anisotropic case examined above, there is yet another real
eigenvalue pair which is A = +3€ for small € (this pair stems
from the higher-order reduction, in agreement with the pre-
diction of the reduced Jacobian). These two eigenvalue pairs
eventually collide at €=0.057, resulting in a Hamiltonian
Hopf bifurcation to an eigenvalue quartet which is present in
the stability spectrum at €>0.057. This phenomenology is
shown in Fig. 4. The leading-order prediction for the most
unstable eigenvalue is in good agreement with the full nu-
merical result for small values of €. For higher values of e,
the second-order corrections that we do not examine here in
detail come into play and lead to the Hamiltonian Hopf bi-
furcation.

To directly compare the dynamics between the isotropic
and weakly anisotropic (yet unstable) case for the supersym-
metric vortex, we have performed numerical simulations.
Detailed simulations are reported in this work only for the
supersymmetric cases (see also the next section), since for all
other states anisotropy operates as a regular perturbation, see
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0 50 100 150 200

FIG. 5. The dynamics of an initially very weakly perturbed su-
persymmetric vortex with S=M =1, principally based on four lattice
sites that form an elementary cell (the sites are labeled as 1,2,3,4).
The time evolution of the squared absolute value of the fields at
these sites is shown in the top panel for a weakly anisotropic model,
with a=1.05, and for its isotropic counterpart (@=1) in the bottom
panel. In both cases, the same uniformly distributed, random initial
perturbation of amplitude 10~ was added to the solution at r=0 to
excite possible instabilities. Clearly, the vortex on the weakly an-
isotropic lattice becomes unstable at t>50, while in the isotropic
case the perturbation remains bounded and small at all times. In
these examples, the intersite lattice coupling constant is €=0.025.

above; as a result, instabilities of the other states may be
shifted due to the anisotropy, but structurally the phenom-
enology remains the same.

For the delicate supersymmetric vortex square, the dy-
namics altered by the anisotropy is indeed found to be dra-
matically different from the isotropic case. This is illustrated
by Fig. 5, for the vortex square with S=M =1, carried (in the
AC limit) by four sites. The time dynamics of the squared
absolute value of the field at the main sites is shown in the
figure for a weakly anisotropic model, with «=1.05, and its
isotropic counterpart (top and bottom panels, respectively).
Stark contrast between the instability developing for #>50 in
the former case, versus the complete stability for all times in
the latter (isotropic) system, is obvious (notice the difference
in the scales of vertical axes between the two panels). In the
linear approximation, these results are well predicted by the
above theory.

V. HIGHER-ORDER VORTICES

We now give a summary of results for vortices with
higher values of the topological charge. First, we consider
the S=M=2 supersymmetric vortex populating the sites
(L,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1), and
(1,-1) in the AC limit, with a phase shift of 77/2 between
adjacent sites (in the isotropic model). The latter provides for
a total phase gain of 47 around a closed path surrounding the
origin. This type of configuration with S=M=2 was identi-
fied in Ref. [26] as possessing a real eigenvalue pair with

\,=£vy80-28e¢, in excellent agreement with numerical com-
putations. However, the presence of the small anisotropy for
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2 4 6 8 10 12 14 16
€ x 107
FIG. 6. For the S=M =2 supersymmetric vortex, the three real

eigenvalues are displayed as functions of € for a=1.05. The solid
and dashed lines depict the numerical and analytical results.

a# 1 again strongly affects the vortex for reasons similar to
the ones presented above. In this case, the reductions leading
to the perturbed dynamics in the anisotropic model are de-
scribed by the following persistence conditions:

0=7(6)

sin(6,— 6,,,) + sin(6,— 6,_,), i=2k+1,k=0,1,2,3,

asin(6,— 0,)) +sin(6,- 0_;), i=4k+2,k=0,1,

sin(6,— 6,,,) + asin(6,- 6,_,), i=4k+4,k=0,1,
(24)

cf. Egs. (22). In this expression, 6, is the phase of the field at
each of the eight above-mentioned sites (where, in the order
the sites were mentioned, the corresponding index is !
=1,2,...,8). Furthermore, as discussed above, the analysis
performed in Ref. [26] can be used to show that the linear
stability eigenvalues for such a vortex soliton will be given,
to the leading order, by Eq. (23). Using this prediction, even
in the weakly anisotropic case (e.g., for a=1.05) one finds
that the corresponding 8 X8 Jacobian possesses three real
O(Ve) eigenvalues, which result in an instability [contrary to
the single real O(e) eigenvalue in the a=1 case]. Hence,
once again, the anisotropy results in a significant destabiliza-
tion of the supersymmetric vortex, in comparison to the iso-
tropic model. As a specific example, we show in Fig. 6 the
situation for a=1.05. The solution of Egs. (24) yields 6,
=0.218, 6,=1.967, 6;=3.182, 6,=4.397, 65=6.145, 6
=7.894, 6;=9.109, and 63=11.036, which, in turn, results in
a Jacobian with the three real -eigenvalues
={1.0145,0.5357,0.2391}. The comparison of the numerical
prediction for the eigenvalue dependence on € versus the
corresponding analytical prediction (solid and dashed lines,
respectively) based on the above results is given in Fig. 6,
demonstrating a very good agreement between the two.

To highlight the substantial differences between the dy-
namics in the isotropic and anisotropic models, we have per-
formed numerical simulations of the supersymmetric vortex
with S=M=2. In this case, the evolution of the field at the
eight basic sites is shown in the top panel of Fig. 7 for «
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0 100 200 300 400

0 100

FIG. 7. Same as in Fig. 5 but for the supersymmetric vortex of
the S=M=2 type. The different lines depict the squared absolute
values of the field at the eight sites carrying the vortex in the an-
isotropic (top) model and its isotropic counterpart (bottom) for €
=0.015.

=1.05 and in the bottom panel for @=1. In the former case,
for the coupling strength €=0.015 considered here, the three
unstable eigenvalues for a=1.05 are A=0.1688, A=0.1258,
and A=0.0855, while in the latter case (isotropic model), the
only unstable eigenvalue is a much smaller one, A=0.0146.
Naturally, we observe the instability setting in much earlier
in the anisotropic model (at 7= 30) than in the isotropic one
(at t=160).

One may be wondering whether the strong dynamical ef-
fect of the weak anisotropy should be attributed to the super-
symmetry of the vortex, or maybe just the specific type of
contour which carries the vortex. To check this, we have also
considered the vortex with $=3 sitting on the same M=2
contour. Given the lack of the supersymmetry in the latter
case, the bifurcation of the relevant 7(=N-1) eigenvalue
pairs occurs at the leading-order reduction and all of them
are proportional to +i\e. More specifically, for the largest
pair in the isotropic case (for instance), the proportionality
factor is 2.3784. In the anisotropic case with a=1.05, the
seven pairs remain on the imaginary axis, being slightly per-
turbed due to a# 1. For instance, the largest one among
them is now A=+2.3943i\e. On the other hand, for a
=0.95, the largest eigenvalue pair is A\==+2.3647i\e. This
also is in line with our above results on the fundamental
discrete soliton and vortex cross, since it indicates that, for
a>1, the collision of this eigenvalue with the continuous
spectrum (which leads to the Hamiltonian Hopf bifurcation)
will occur at smaller €, the opposite being true for a<<1.
Hence the stability diagram of the S=3, M =2 vortex square
is quite similar to that shown for the fundamental soliton and
vortex cross in Figs. 2 and 3 (therefore, it is not shown here).

VI. CONCLUSIONS

In this work, we have examined the effects of anisotropy
on lattice nonlinear dynamical systems supporting discrete
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solitons and vortices. The two-dimensional discrete nonlin-
ear Schrodinger equation was used as a paradigm model. The
variational approximation was developed for fundamental
solitons, showing (by means of the Vakhitov-Kolokolov cri-
terion) that broad quasicontinuum ones are unstable, while
strongly anisotropic solitons are stable. By means of numeri-
cal methods, we have found that usual localized states, such
as the fundamental discrete solitons and vortex crosses, are
only mildly affected by the anisotropy, which results in a
modified stability region (reduced when one direction fea-
tures a stronger coupling than the isotropic limit, and aug-
mented when the coupling along this direction is weaker).
General phenomenology for such states is similar to that for
their counterparts on the isotropic lattice.

The main finding reported in the present work is that the
assumption about mild deformation of the stability region
induced by weak anisotropy is not valid for the delicate su-
persymmetric vortex states residing on square contours, in
the case when the vorticity S is equal to the contour’s size M.
In this special case, the degeneracy of the leading-order ex-
istence conditions (dictated by Lyapunov-Schmidt theory)
specific to the isotropic case is broken by the anisotropy.
This, in turn, results in a dramatically different behavior (as a
function of the intersite coupling constant) of the corre-
sponding linear stability eigenvalues, in terms of both the
order of their bifurcation and the number of real eigenvalues.
As a consequence, the supersymmetric vortex-square struc-
ture that was marginally stable in the isotropic case is found
to be strongly unstable even on the weakly anisotropic lat-
tice. Similarly, the supersymmetric vortex with S=M=2 is
found to be much more unstable in the anisotropic case in
comparison to its isotropic counterpart.

The most natural systems for experimental observation of
the results predicted in this work are deep optical lattices
trapping BECs, and bundled sets of nonlinear optical
waveguides (the latter have been recently created experimen-
tally [28]). Anisotropic lattices can also be induced in pho-
torefractive media, but this medium should be considered
separately, in view of the different (saturable) character of
the optical nonlinearity in this case. Such investigations are
currently in progress and will be reported elsewhere.

A further natural extension of this work would be to ex-
amine the effects of anisotropy in three-dimensional lattices
on discrete solitons, vortices, dipoles and quadrupoles of
various types, octupoles, and more exotic localized configu-
rations that were recently investigated for the isotropic case
in Ref. [29].
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