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Abstract

We examine the dynamics of a bright solitary wave in the presence of a repulsive or attractive localized “impurity” in Bose—
Einstein condensates (BECs). We study the generation and stability of a pair of steady states in the vicinity of the impurity
as the impurity strength is varied. These two new steady states, one stable and one unstable, disappear through a saddle-no
bifurcation as the strength of the impurity is decreased. Soliton dynamics is also studied, including cases where the soliton is
offset from one of the relevant fixed points. The numerical results are corroborated by theoretical calculations which are in very
good agreement with the numerical findings.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction in the study of the nonlinear matter waves that appear
in this context. More specifically, experiments have
yielded bright solitons in the self-attractivé&i con-
densate in a nearly one-dimensional setfitjgas well
as their dar3] and, more recently, gaj@] counter-
parts in the repulsiv€’Rb condensate. The study of
these matter-wave solitons, apart from being a topic of
mponding author. inj[ere_st in its own right, may glso have important ap-
E-mail address. dfrantz@cc.uoa.giD.J. Frantzeskakis). plications. For instance, a soliton may be transferred

In the past few years, the rapid experimental and
theoretical developments in the field of Bose—Einstein
condensates (BECE)] have led to a surge of interest
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and manipulated similarly to what has been recently tial, can lead to novel (and experimentally tractable)
shown, experimentally and theoretically, for BECs in applications, such as capturing (either at or near the
magnetic waveguidg$] and atom chip$6]. Further- localized impurity) a matter-wave soliton and subse-
more, similarities between matter and light waves sug- quently guiding it, essentially at will. Our approach
gest that some of the technology developed for optical is different from that of Refq/15,19], in that we will
solitons[7] may be adjusted for manipulations with view the presence of the defect as a bifurcation prob-
matter waves, and thus applied to the rapidly evolving lem. We demonstrate that the localized perturbation
field of quantum atom optics (see, e[§]). (independently of whether it is attractive or repul-
One of the topics of interest in this context is how sive) creates an effective potential that results in two
matter-waves can be steered/manipulated by means ofadditional localized states (one of which is naturally
external potentials, currently available experimentally. stable, while the other is always unstable) for suffi-
In addition to the commonly known harmonic trap- ciently large impurity strength. As one may expect on
ping of the atoms in a parabolic potential, it is also grounds of general bifurcation theory, these states will
experimentally feasible to have a sharply focused laser disappear, “annihilating” each other, as the strength
beam, such as ones already used to engineer desiredf the impurity is decreased below a threshold value.
density distributions of BECs in experimeri8j. De- We will describe thissaddle-node bifurcation in the
pending on whether it is blue-detuned or red-detuned, present context. We will also compare our humerical
this beam repels or attracts atoms, thus generating apredictions for its occurrence with analytical results
localized “defect” that can induce various types of in- following from an approximation that treats the soli-
teraction with matter waves. This possibility was de- ton as a quasi-particle moving in an effective potential.
veloped to some extent in theoreti¢8] and experi- Very good agreement between the analytical and nu-
mental[10] studies of dynamical effects produced by merical results will be demonstrated. Finally, we will
moving defects, such as the generation of gray solitons examine the dynamics of solitons inside the combined

and sound waves in one dimensidrd], and the for-
mation of vortices in two dimensions (see, e[d2]
and references therein).

It should be pointed out, however, that, generally,
the interaction of waves with impurities is of fun-
damental interest, which has been studied both in
the theory of nonlinear waved 3] and solid state
physics[14]. Both relevant problems, namely the non-
linear Schrodinger (NLS) bright soliton scattering by
impurities[15] (see also recent work if16] and ref-
erences therein) and the excitation of spatially local-
ized nonlinear impurity modg4 7] have been studied.
A relevant work, but for dark solitons, has also been re-
ported in[18] and reexamined in the context of BECs,
where an harmonic trapping potential is also incorpo-
rated in the NLS equation. Thus, the interaction of
dark matter-wave solitons with a localized impurity
was also analyzefll9] (see also recent work if20]
and relevant results if21]), while, more recently, the
effect of an impurity (or a potential step) in the BEC
mean-field was studied as wid2].

The subject of the present work is the study of the
interaction oftrapped bright matter-wave solitons with
impurities. As we will see, the presence of the rele-
vant harmonic trap, together with the impurity poten-

potential, jointly created by the magnetic trap and the
localized defect. Both equilibrium positions and mo-
tion of the free soliton will be considered in the latter
case.

The Letter is structured as follows: in Secti@n
we present our effective potential theory. In Sectipn
we discuss numerical methods and results, and pro-
vide their comparison with the analytical predictions.
Finally, in Sectior4, we summarize our findings and
present our conclusions.

2. Setup and theoretical results

In the mean-field approximation, and at sufficiently
low temperatures, the single-atom wavefunction for a
dilute gas of ultra-cold atoms very accurately obeys
the Gross—Pitaevskii equation (GPE). Although the
GPE naturally arises in the three-dimensional (3D)
settings, it has been show@3-25] that it can be
reduced to its one-dimensional (1D) counterpart for
the so-called cigar-shaped condensates. Cigar-shaped
condensates are created when two transverse direc-
tions of the atomic cloud are tightly confined, and the
condensate is effectively rendered one-dimensional by
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suppressing dynamics in the transverse directions. Thethat the approximation of the localized impurity by

effective equation describing this quasi-1D is simply
tantamount to a directly written 1D GPE. In normal-
ized units, it takes the well-known form,

1)

where subscripts denote partial derivatives atd t)

is the one-dimensional mean-field wavefunction. The
normalized 1D atomic density is given by =
lu(x, )%, while the total number of atoms is pro-
portional to the norm of the normalized wavefunction
u(x,t), which is an integral of motion of Eq1):

+00

P= / |u(x, t)|2dx.

—00
The nonlinear coefficient in Eq1) is g = £1, for
repulsive or attractive interatomic interactions, respec-
tively. Finally, the magnetic trap, together with the lo-
calized defect (assumed to be located:at &), are
described by a combined potentia(x) of the form

3)

In Egs. (1) and (3) the space variable is given
in units of the healing length = h/./nogipm, where
no is the peak density, and the normalized atomic
density is measured in units af. Here, the non-
linear coefficient is considered to have an effectively
1D form, namelygip = gap/(2713), where gsp =
4h?a/m is the original 3D interaction strength (s
the scattering lengthy is the atomic mass, and =
JHi/mw, isthe transverse harmonic-oscillator length,
with @ being the transverse-confinement frequency).
Further, timer is given in units of€/c (wherec =
/nogip/m is the Bogoliubov speed of sound), and the
energy is measured in units of the chemical potential,
u = g1pno. Accordingly, the dimensionless parameter
2 = hw,/g1pno (Wherew, is the confining frequency
in the axial direction) determines the effective strength
of the magnetic trap in the 1D rescaled equations. Fi-
nally, since we are interested in bright matter-wave
solitons, which exist in the case of attraction, we here-
after set the normalized nonlinear coefficignt —1.

As far as the impurity potential is concerned, the
parameterVy measures the impurity strength, with
Vo > 0 (Vo < 0) corresponding, respectively, to an at-
tractive (repulsive) defect. Also, it should be noticed

1
ity = =St + glul®u + V(x)u,

)

V(x)—}.szz—VS —
=5 0d(x —§&).

the § function may correspond to a sharply focused
laser beam with a width of order of the condensate’s
transverse size. However, even in the context ofsthe
approximation, the impurity creates a dif(< 0) or
a hump {p > 0) on the condensate (f¢r< 7, n be-
ing the width of the condensate—see below), having
the size of the healing length[19].

In the absence of the external potential, B9 .sup-
ports stationary soliton solutions of the form

uy(x) =nsectin(x — &) exp(in’t/2), 4)

wheren is an arbitrary amplitude angdis the position

of the soliton’s center. It is possible to generate moving
solitons (with constant velocity) by application of the
Galilean boost to the stationary soliton in E4).

One can examine the persistence and dynamics of
the bright solitary waves in the presence of the po-
tential V (x) by means of standard perturbation theory
(see, e.g., Ref413,26] and another approach, based
on the Lyapunov—Schmidt reduction, that was devel-
oped in Ref[27]). This method, which treats the soli-
ton as a particle, yields effective potential forces acting
on the particle from the defect and the magnetic trap,
namely

Faet = 2n°Votanho sec 6, (5)
and
Ftrap= —25225777 (6)

wheref = n(& — ¢). The above forces enter the equa-
tion of motion for¢ (¢):

E = Fimp + Ftrap~ (7)

Below, results following from this equation will be
compared to direct simulations of g(d,).
The stationary version of E¢7) (¢ = 0),

(n®Vo/$2%) tanhp seclf 6 = ng — 6, (8)

determines equilibrium positiong ) of the soliton’s
center. Depending on parameters, this equation may
have one or three physical solutions, see below. In
what follows, we will examine the solutions in detail
and compare them to numerical results stemming from
direct simulations of Eq1).
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3. Numerical methods and results

In order to numerically identify standing wave solu-
tions of the GPE, we substitutgx, r) = exp(i At) x
w(x) in Eq.(1), which results in the steady-state prob-
lem:

1 3
Aw = wax + w” —Vx)w.

9)

This equation is solved by a fixed-point iterative
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may correspond to a stable soliton, whereas its com-
panion branch definitely represents an unstable soli-
tary wave. The full bifurcation-diagram scenario, for
the position of the soliton’s center and its norm, is de-
picted inFig. 1 It is interesting to note that the norm
of the solitons corresponding to the unstable branches
varies almost linearly with the defect’s strength, while
the stable branches correspond to solitons whose norm
is approximately constant.

The qualitative predictions about the nature of the

scheme on a fine finite-difference grid. Then, we ana- steady states and their stability have been tested for

lyze the stability of the obtained solutions by using the
following ansatz for the perturbation

ux) = eiAt[w(x) +a(x)e ™™ +b* (x)e_m] (10)

(the asterisk stands for the complex conjugation),
and solving the resulting linearized equations for the
perturbation eigenmodegi(x), b(x)} and eigenval-

ues A associated with them. The resulting solutions
are also used to construct initial conditions for di-
rect numerical simulations of Ed1), to examine

typical scenarios of the full dynamical evolution. To
eliminate effects of the radiation backscattering in

both cases of repulsive and attractive defects, as shown
in Figs. 2 and 3respectively. In these figures, the
three left panels show the spatial profiles of the stable
branch at = 0, and the unstable and stable branches
in the neighborhood of the defect. The middle panels
show the temporal evolution of each one of these solu-
tions, while the right panels show the results of the lin-
ear stability analysis. The latter set clearly illustrates
the instability of the middle branch due to the presence
of a real eigenvalue pair. It is also noteworthy that, in
the case of the repulsive defect (in which case an un-
stable solution is centered at the defect), the soliton

these simulations, we have used absorbing bound-oscillates around the nearby stable steady state, shed-

ary layers. Finally, thes-function of the impurity

potential was approximated by a Gaussian wave-

form as §(x) = lim,_ o+ (1/v/270) exp(—x?/40).
Lorentzian and hyperbolic-function approximations to
the §-function were also used, without producing any
conspicuous difference in the results.

ding radiation waves, cfFig. 2 On the other hand,

in the attractive case the unstable solution centered
beside the defect is trapped by the defectFif. 3.
However, a fraction of the condensate is also emitted
from the defect in the process, leading to oscillations
that can be observed in the respective space—time evo-

As mentioned above, depending on the value of the lution panel.

defect’s strengthVp, Eqg. (8) may have either one or
three physical roots for (the equilibrium position of

To verify the analytical results following from
Egs.(7) and (8) we have compared the analytically

the soliton’s center). The border between these two predicted critical value o¥} (for which a double root
generic cases is a separatrix where two of the roots appears) with the numerically obtained turning point

merge in one before they disappear. All the qualita-
tively different cases are depicted in the top-left panel
of Fig. 1L The physical interpretation of this result can
be given as follows. Obviously, in the absence of the

for the saddle-node bifurcation. This comparison was
performed for many values of the impurity center

In fact, the critical value was predicted using two dif-
ferent forms of the analytical prediction: one with the

defect there exists a stable solitary-wave configuration Dirac §-function, and another one with the Gaussian

centered at = 0 (hence there is a single steady state

approximation for theS-function and an accordingly

in the problem). On the other hand, it is easy to see that modified version of Eq(8), namely

Eq. (8) generates three solutions for largg Hence,

there should be a bifurcation point, of the saddle-node
type, that leads to the disappearance of two branches

of the solutions a9/, decreases. Furthermore, based
on general bifurcation theory principles, one of the

o
Fimp + Firap= / V(x)£(|u(x)|2)dx=0, (11)

with the functionV (x) incorporating both the par-

steady states disappearing as a result of the bifurcationabolic magnetic trap and the Gaussian impurity terms.



148 G. Herring et al. / Physics Letters A 345 (2005) 144153
v ch f\ 8
g 0
10 X \
A p
5
oo e
0 4
-5 , 2
d
!
-10 v 0
Vi
-1 1 3 5 7 9 -05 -03 -01 0.1 0.3 05
¢ 0
100~ o
‘\\~ 7.5_._.:\_\ _________________________________
95
7
9 65
o . o .
85 6
8 \; 55
5
[
- - * - 45
-1 -08 -06 -04 -02 0 0 0.2 04 0.6 0.8 1
Vo Vo

Fig. 1. Saddle-node bifurcation of stationary states for the bright soliton cgimside the magnetic tragd = 0.1), with the localized defect
of strengthVj located at = 6. The top-left panel displays the corresponding solutions of the stationary eq(8tibor the weak defect case

(dash-dotted line), only one steady state exists very close to the origin. As the defect's strength increases, two additional fixed points (both
located on the same side of the impurity) are created in a saddle-node bifurcation. The top-right panel depicts the position and stability (solid

for stable and dashed for unstable) for the steady states as a function of the defect’s $fgeig thin horizontal line fo = 6 shows the
location of the defect. The two bottom plots depict another version of the stability diagram, in terms of the solitonB (eeenEq(2)), as

Vo is varied.

Here the integration was performed with the numeri-
cally implementedV (x), and the best fit ofi(x) to a
hyperbolic secant waveform has been used in(Ew).
The parameter values along with the resulting critical
values ofVy are given inFig. 4. In all cases, the nu-
merical results for the bifurcation point closely match
the theoretical predictions.

Having examined statics and dynamics in the vicin-
ity of the stable and unstable fixed points of the sys-
tem, we now turn to an investigation of the dynamics,
setting the initial soliton farther away from the equi-
librium positions.Fig. 5 displays three typical exam-
ples, with the soliton set to the left and to the right of
the repulsive (and of the attractive) defect. In the re-
pulsive case, we observe that the soliton is primarily
reflected from the defect. However, when it has large
kinetic energy at impact (which takes place if it was
initially located at a position with large potential en-

ergy), a fraction of the matter is transmitted through

the defect. On the other hand, in the attractive case,
a fraction of the matter is always trapped by the de-
fect. However, this fraction is smaller when the kinetic

energy at impact is larger.

We note in passing that, while Ei7) can predict
not only the equilibrium positions of the soliton but
also the dynamical behavior gf#), we have chosen
not to use it for the numerical experiments. The main
reason is that, as can be clearly inferred freigs. 2,

3 and 5 the interaction of the solitary wave with the
defect entails emission of a sizable fraction of mat-
ter in the form of small-amplitude waves, which, in
turn, may interfere with the solitary wave and signif-
icantly alter his motion (see, e.dsig. 5. Hence, the
prediction of the dynamics based on the adiabatic ap-
proximation, which is implied in Eq(7), would be
inadequate in the presence of these phenomena.
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Fig. 2. Steady states of the bright soliton for the repulsive defggt: —1, 0 = 0.045,7 = /2, 2 = 0.1 and¢ = 6. The first row corresponds

to the steady state at= 0, the second row to the steady state centered at the defect, and the third row to the steady state trapped to the right of
the impurity. For each row, the left panel displays the numerically exact steady-state soliton profile (dashed lines show the potel83| of Eq.

the middle panel is the space-time evolution shown by means of contour plots, and the right graph shows the spectral)plafe the

stability eigenvalues = X, + iA; corresponding to this solution. For the two stable steady states (trapped at the defect and to the right of it),
the solution remains stationary as expected. On the other hand, for the unstable steady state, after approximately 20 time units, the instability
fragments the soliton into a more localized part oscillating to its right and a more extended part oscillating to its left.

4. Conclusions

presence of harmonic (magnetic) trapping, which is
relevant to Bose—Einstein condensates with negative

In this work, we have examined the interaction scattering lengths. We have found that the defect in-
of bright solitary waves with localized defects in the duces, if its strength is sufficiently large, the existence
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Fig. 3. Same as in the previous figure, but for an attractive defect: —1, o = 0.045, 5 = +/2, £2 = 0.1 and¢ = 6. Notice that now the
unstable steady state is to the left of the attractive defect, while its unstable time-evolution leads to its trapping at the defect.

of two additional steady states (bifurcating into exis- stable states leads to oscillations around (for repulsive
tence through a saddle-node bifurcation), one of which defects) and/or trapping at (for attractive defects) the
is stable and one unstable. We have constructed thenearby stable steady state. Additionally, we have de-
relevant bifurcation diagram and explicitly found both veloped a collective-coordinate approximation to ex-
the stable and the unstable solutions, and quantified plain the steady soliton solutions and the correspond-
the instability of the latter via the presence of a real ing bifurcation. We have illustrated the numerical
eigenvalue pair. The dynamical instability of these un- accuracy of the analytical approximation by compar-
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Fig. 5. Examples of the soliton interaction with the repulsive defect (top panels) and the attractive one (bottom panels) bbeatdrae
soliton is initially offset with respect to the steady states of the model. For all cases, the parameligrs aré, o = 0.045 andy = /2. The

initial position of the soliton igg = 12, —6, —12, for the plots from left to right. In the repulsive case (top panels), the soliton is primarily
reflected by the defect (with a small transmitted fraction of the norm). Similar behavior was observed for other valugthdhe amount of
material passing through the defect increasing withOn the other hand, in the attractive case (bottom panels), the soliton is fragmented into
reflected, trapped and transmitted parts. For larger initial valuestbe trapped fraction is smaller.
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ison with direct numerical results. We have also dis-
played, through direct numerical simulations, the dy-
namics which follows from setting the initial soli-
ton off a steady-state location. Noteworthy phenom-
ena that occur in this case are the emission of radia-
tion by the soliton colliding with the repulsive defect,
and capture of a part of the matter by the attractive
one.

These results may be relevant to the trapping, ma-
nipulation and guiding of solitary waves in the con-
text of BECs. They illustrate the potential of the
combined effect of magnetic and optical (provided
by a focused laser beam) trapping to capture (ei-
ther at or near the laser-beam-induced local defect)
a solitary wave which can be subsequently guided,
essentially at will. Naturally, the beam’s intensity
must exceed a critical value, which can be explic-
ity calculated in the framework of the developed
theory. It would be particularly interesting to exam-
ine the predicted soliton dynamics in BEC experi-
ments.
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