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Abstract. The extensible penduium is studied numerically to
illustrate the Hamiltonian transition to chaos. This is an
apparently simple system which is well suited to explain
concepts related with the onset of chaos. Using Poincaré
sections we exhibit the low-energy regular motion and the
coexistence of stochastic and regular motion at intermediate
energies. We employ other diagnostic techniques for
checking our conclusions.

1. Introduction

The properties of the motion of a great number of
classical systems can mimic results calculated from
a stochastic process. This should be clear from the
well known lack of predictability in the tossing of a
coin (which is almost the universal paradigm of
randomness) or the spinning of a roulette wheel. As
prediction is impossible despite the determinism of
the basic dynamical rules, this behaviour has been
termed deterministic chaos. Its development can be
considered akin, in a not very precise way of
thinking, to the onset of turbulence in a fluid in
motion. Over the last few years there have been
many contributions which illustrate the transition
to chaos in systems with physical interest (Nifiez-
Yépez et al 1989 and references therein, Bercovich
et al 1991) but most of these have dealt with dissi-
pative chaos, that is, systems where the effects of
viscosity, friction, or any other causes of dissipation
are important. Stochastic behaviour may also occur
as Hamiltonian cheos in conservative systems. In
fact, the stochastic properties of motion were first

|| To whom correspondence should be addressed.

Resumen, Estudiamos numéricamente los movimientos de
un péndulo extensible con el propésito de ilustrar la
transicion bamiltoniana al caos. Este sistema es
aparentemente muy siraple, pero resulta muy apropiado
para la explicaciéon de conceptos refacionados con la
apaticion del caos, Mustramos la existencia movimientos
repulares a baja energia, asi como la coexistencia de
movimientos regulares y cadticos a energias intermedias.
Recurrimos a otras técnicas de diagndstico para corroborar
nuestros resultados.

discovered in Hamiltonian systeras through the
prodigious intuition of Poincaré (1§92), although its
rediscovery for the majority of the scientific com-
munity was only 30 years ago in a paper by Hénon
and Heiles (1964).

It is the purpose of this paper to discuss and
exemplify some basic properties of the Hamiltonian
transition to chaos using the apparently simple sys-
tem of two parametrically coupled oscillators. This
system is called the extensible or elastic pendulum
(Breitenberger and Mueller 1981, Witt and Gorelik
1933). The system has only two degrees of freedom
bui displays an extremely rich dynamical behaviour
(Broucke and Baxa 1973, Hitzl 1974, Nuifiez-Yépez
et al 1990). After giving the motivation for the study
of this systern from the point of view of molecular
vibrations and deriving a few analytical results, we
exhibit, with the help of the Poincaré sections, the
coexistence of chaotic and regular motion in its
dynamics. We next evaluate its Liapunov spectrum.
We also use other indicators of the behaviour in
order to clarify the meaning of the dynamical
complexity found. There is a great deal of aesthetic
charm to be derived from this sort of studies which
can be shared with students of afl levels. One may
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wonder then why this beautifu} aspect of dynamics
had not been ofien observed much earlier. An
answer to this question appears to be that, although
the behaviour was there, no one knew what gquestions
to ask or how to look for it. This was partly due to
the enormous faith put in the long term predicting
powers of dynamics—summarized in the famous
Einstein dictum ‘God does not play dice’—and to
the lack of computational power since; as we hope
to make clear in this work, computers can play a
fundamental role in these studies.

2. Hamiltonian systems: integrable and
chaotic

A time-independent, or autonomous as it is also
called, Hamiltonian system with N degrees of
freedom is characterized by its Hamiltonian function
2

H(p,q) =5+ V{g), (1)
where p and g are shorthand for the N canonical
coordinates and the N momenta conjugate to them,
and ¥(g) is the potential emergy function of the
system. The corresponding equations of motion are
the 2N first-order Hamilton equations

. O . 8H

qﬂ—apa1 pd aqai a_'l""?Nl (2)
which govern the dynamics in the 2N-dimensional
phase space. The solutions to the canonical
equations have quite interesting properties. For
example, according to Liouville theorem (Landau
and Lifshitz 1977), they preserve the phase-space
measure or ‘volume.’ This means that if you fake a
set of points with measure ¥, as initial conditions,
the volume occupied by these points at any later
time, as they evolve according to (2), is always the
same. If we think of all the trajectories evolving from
the original volume as a kind of Auid, this result may
be stated saying that the phase fluid is incompress-
ible. This property has deep comsequences, for
instance it rules out the existence of attractors or
repellors of any sort in conservative systems. This is
perhaps the most important difference between
Hamiltonian and dissipative chaos. Liouville’s prop-
erty also implies the Poincaré-Zermelo recurrence
theorem (Arnold 1978), which essentially says that,
given a long enough time interval, generic bounded
motions in Hamiltonian systermns always return
‘sufficiently near’ to their initial conditions.

A Hamiltonian system is said to be integrable
when there are at least NV globally defined functions
{p. @), a=1,...,N, which are independent, single
valued, isolating constants of motion in involution,
that is, such that their pairwise Poisson brackets van-
ish {1,,1;} =0, a,b =1,..., N (Martinez-y-Romero
et @l 1992, 1993). If a Hamiltonian system is inte-
grable its associated Hamilton-Jacobi equation is
separable in at least one system of coordinates

(Landau and Lifshitz 1977). Much of the students
intuition on the possible behaviour of a Hamiltonian
mechanical system is based on experience with inte-
grable systems, which in many respects behave just
like an N-dimensional harmonic oscillator with an
energy-dependent frequency. Examples of integrable
systems are very rare in classical mechanics; besides
the harmonic oscillator and one-dimensional prob-
lems, we can only mention the Kepler problem and
the Toda lattice (Gutzwiller 1990). For a catalogue
of other integrable Hamiltonian systems in three
dimensions see Evans (1990). Since in the integrable
problems the Hamilton—-Jacobi equation is separ-
able, there must exist a canonical transformation
which changes the system from the original coordi-
nates to the new action J; and angle 8; coordinates.
In these coordinates it becomes obvious that an
integrable system admits only periodic or con-
ditionally periodic motions. The phase-space trajec-
tories of these systems are then easily seen to be
confined to the surface of nested N-dimensional tort
which completely fill the available phase space. An
obvious result is that there is no stochastic behav-
iour or chaos in integrable systems; on the tori, the
motion can be periodic or conditionally periodic
depending on whether the frequencies with which
the torus is traversed are rationally dependent or
not (see figure 1). The assumption that these two
are the only possibilities for the motions in a generic
Hamiltonian system, as was indeed implicitly
assumed by most people until recently, excludes
chaotic motions and is wrong.

What happens when we have anm arbitrary
Hamiltonian system where the only obvious com-
stant is the Hamiltonian itself? If there are indeed
no more constants of motion, the behaviour of the
system is not further ‘restrained’ in any way. There
are no globally defined tori tiling the whole phase
space; hence, the possible motions may wander over
all the available phase space, If the phase space region
which these motions fill is (2N - 1)-dimensional,

Figure 1. If a system is integrable its phase space is
toliated by tori. Wustrated here is a two-dimensional
torus showing the action-angle variables needed for its
specification. The phase-space trajectories of integrable
systems are confined to the surface of the torus. The
motion is pericdic or quasipericdic depending on
whether the ratio of frequencies #;/6; is rational or not.
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the motion appears to have stochastic characteristics.
The important point here is that, in the absence of at
least N constants of motion, the system begins to
show a great sensitivity to the initial conditions;
when the system develops this extreme sensitivity,
even initially small perturbations (produced, say, by
the external epvironment) are amplified by the
dynamics, leading inexorably to catastrophic growth
in uncertainty and to the seemingly stochastic
properties typical of chaos. Notice that for this to
happen it is necessary (but not sufficient) to have a
non-linear evolution equation. Most non-linear sys-
tems have equations of motion that are not exactly
solvable. Hence, to study their behaviour numerical
methods are required. As the accuracy of computer
numbers is finite, the precision of the initial con-
ditions one can give is also finite. Any initial error
is magnified by the dynamical evolution and any
long term prediction is impossible even with the help
of a computer. Moreover, as in a bounded system
there is a finite measure of phase space available
to the system, this amplification is by necessity
accompanied by a process of contraction giving a
very complex geometric structure to the phase-space
trajectories.

3. The extensible pendulum

To exemplify the transition to stochastic behaviour
we have chosen an apparently simple systemn with
only two degrees of freedom—but then it has the
minimum number of degrees of freedom to allow
chaotic behaviour in a time-independent Hamil-
tonian systemm—the so-called elastic or extensible
pendulum. This problem was introduced long ago
by Witt and Gorelik (1933) and has been studied
by several authors (Contopoulos 1963, Broucke
and Baxa 1973, Hitzl 1974, 1975, Breitenberger and
Mueller 1981, Nifez-Yépez er al 1990, Cuerno ef af
1992) as a kind of paradigm of non-linear systems.
The interest for it comes from various sources,
both with mathematical and physical interest
(McLachlan 1947, Pippard 1989, Rott er of 1991,
Anitin et al 1993). One of the most interesting
suggestions is that it can serve as a classical analogue
of a quantum resonance phenomenon observed in
some triatomic molecules. If we imagine such a
molecule oscillating as in figure 2(a), it is not dif-
ficult to convince omeself that a classical model
for those motions is a pendulum whose cord has
springlike characteristics. The anharmonic coupling
so obtained has been of help in explaining the Fermd
resonance observed in the infrared spectrum of
molecules like CO, (Kuzmin and Stuchebrukhov
1989). A classical image of this molecular coupling
is then as shown in figure 2(b). The extensible pendu-
lum js thus (Witt and Gorelik 1933, Pippard 1989,
Breitenberger and Mueller 1981) time-independent,
conservative and reduces to a pair of uncoupled
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Figure 2. (a) Schematic representation of a €O,
molecule ilustrating the bending and stretching modes
of vibration. When the ratio of frequencies is 2, the
coupling between these two modes produces a strong
parametric resonance known, quantum mechanically, as
the Fermi resonance. {b) The extensible pendulum
showing the Cartesian coordinates used for s
description. The origin is located at the equilibrium
position of the system with the mass attached, marked @
in the figure. Notice that the system can be considered
as a madel for the coupling of the bending and
stretching modes in a molecule like that shown in

figure 2(a).

harmonic oscillators for infinitesimal amplitudes.
For not so small amplitudes the system seesaws
parametrically in amplitude: the stretching mode
periodically alters the pendulum length, and hence
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the pendulum period also changes with time. This is
an inherently non-linear process since the motion
cannot be represented as a simple superposition of
the two modes of figure 2(a).

The Hamiltonian of the system is found to be
(Breitenberger and Mueller 1981, Carretero-
Gonzélez 1992, Anidin er af 1993):

H(g1,92,P1:02) =%(P% +73)
+3({(1- gt + G — eqign),

3)
where ¢ is 2 non-dimensional parameter defined as
2
mg w,
=l-==1-[2 4
=17 (ws) ’ @

m is the mass of the pending object, g is the accel-
eration produced by the gravitational field, / is the
length of the spring at equilibrium under a static
load mg, wy and w, are, respectively, the small
oscillation frequencies of the spring and pendulum
modes, and we have introduced the scaled coordi-
nates g, = x{!, gz = p/!, the time has been scaled in
units of w;®, and the energy in units of muli®.
This rescaling manages to reduce the four original
parameters of the system (m,g k. [), to a single
one, ¢, It suffices then to vary ¢, instead of varying
m, g, k and [ separately, to obtain all possible
dynamical cases. With the mechanical interpretation
given for the Hamiltonian (3), we have wp <w;
(Breitenberger and Mueller 1981, Nufiez-Yépez et af
1990), this implies the restriction 0 <c <1 on the
possible values of e.

The potential energy function appearing in (3), is
not confining at all epergies. There exists a maxi-
mum value of the energy, £, up to which the par-
ticle remains trapped; at greater energies the system
‘fomizes.” To evaluate Eg,,, we have to calculate
the position of the (only two) saddle points of ¥,
whick are g ={(/2(1-c}/e, *(I-c}/e), and
evaluate the energy there. The symmetry of the
potential about the g-axis is evident from the
equation (3), so the two saddle points have the same
energy, which is

By = V{gs:fa) = Q?)_ (5)

From equation (3) we can see that £, =0, so the
energy range of interest to us here is 0K E<
(1 — ¥ /2¢% The low-cnergy motion of the system
has been discussed using the slow-fluctuation tech-
nique by Breitenberger and Mueller (1981) and more
recently by Anifin et &l (1993) using perturbation
methods, in two interesting papers.

The equations of motion following from (2) and
the Hamiltonian (3) are

g =r1, b ={c—1)g + cqga, (6)

and

&2 =2, pr=-q +oqi/2. )
These equations are easily analysed in two cases:
¢=0 and ¢=1. The first case reduces the system
to two uncoupled oscillators, whereas the second
case corresponds to unbounded motion and, there-
fore, it is of no interest in this work. For other values
of the parameter, the equations cannot exactly be
solved despite their simple appearance, hence we use
a numerical method to integrate the equations of
motion. For the numerical computations a 3900
micro Vax computer and a fourth-order Runge-
Kutta integration method have been used, but even
a personal computer may be used to do many of
the computations. Notice that if ¢ %0 and ¢+ 1,
there are no obvious global constants of motion in
our system excepting the Hamiltonian itselfi thus
we expect stochastic behaviour in the bounded
motions of the extensible pendulum. This initial
guess is corroberated by the numerical results shown
in the next section. We must emphasize that there is
no known method for predicting if a given non-
linear Hamiltonian system with two or more degrees
of freedom may behave chaotically or not.

4. Regular and chaotic behaviour in the
extensible pendulum

4.1. Poincaré sections

One of the most illustrative methods for exhibiting
the dynamics of a Hamiltonian system is the so
called Poincaré section method, These sections are
constructed as the points where a phase-space trajec-
tory pierces, when it goes in a given direction (for
example, as we choose here, when p; > 0), 2 pre-
viously selected plane (P). The plane, called the
Poincaré plane, has to be chosen in a way that the
trajectory can intersect it several times. In this way,
though the trajectories of a conservative N-degrees-
of-freedom system ‘live’ in a (2N — 1)-dimensional
space, we can effectively reduce the dimension to
ZN—2 in order to plot the behaviour of the
trajectories. In this way we are able to reduce the
phase space trajectory to a discrete mapping, the
so-called Poincaré mapping. It is clear that this tech-
nique is specially useful in systems like the extensible
pendulum, with only two degrees of freedom.

In this paper we are working with a two-
dimensional system whose phase space variables are
(¢1,92,p1,02)- As the emergy is a constant of
motion, the number of variables of our system is
reduced from four to three (g, qa,p1)—p; can be
calculated from those three using the energy
equation. If another independent constant of motion
exists, then the trajectory would lay on a two-
dimensional surface (ie. on the intersection of
the 3-surface of constant energy and the 3-surface
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associated with the constancy of the second quantity)
and thus the points intersecting the Poincaré section
would lay on a smooth curve. This corresponds to
the case of a regular trajectory. What happens in
the case of an irregular trajectory? In this case no
extra constant of motion exists, the trajectory lives
then on the three-dimensional hypersurface of con-
stant energy and its intersection with the Poincaré
plane would tend to fili a certain two-dimensional
region of it. Summarizing, on the Poincaré section
the regular orbits appear as points on a smooth
curve, whereas any chaotic trajectory appears as
a splatter of points filling a certain area of it (see
figure 3).

We can observe the transition to chaos in our
system in figure 3. This figure shows Poincaré
sections calculated, with ¢ = (0.75, at four different
energies. In this case the Poincaré section is chosen
to be the plane (g;,p)). The range of energies in
which the motion is bounded is 0 < E <. The
successive Poincaré sections illustrate the onset of
stochastic behaviour as the energy is increased. For
E=0.00875 (figure 3(a)) only regular orbits (i.e.
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points located on smooth curves) can be seen; bat,
at E=0.01875 (figure 3(b)) the central orbit has
‘thickened’ and a splatier of points that fills a surface
on the Poincaré plane can be discerned near the
origin; the central region is behaving chaotically. As
we continue to increase the energy (figures 3(c) and
(d)), the chaotic region grows until we almost reach
Erax where most of the Poincaré section is occupied
by chaotic orbits. For the purposes of comparison
figure 4 illustrates the difference between a regular
and a chaotic orbit in the ‘physical’ space (g,,4,).

But how is it that, at low energies, the trajectories
seem to be confined to apparently smooth curves if,
according to our previous discussion, the only con-
stant of motion is the Hamiltonian? An answer to
this question may be given in two related forms:

(1) If the system is not integrable, the only globally
defined, time-independent and isolating constant of
motion is H, but there can be other constants which
though not globally defined may serve to partially
restrain the behaviour of the system (Martinez-y-
Romero ef of 1992, 1993). This is clearly seen in
figure 4, where these constants are increasingly less

Figure 3. Poincaré sections for different values of the energy; {a) £ = 0.00875: (b) £ = 0.01875; (c) £ = 0.02375; (d)
£ = 0.03875. The value of the parameter is ¢ = 0.75, the same in all cases. The continuous oval-shaped curve
corresponds to the boundary of the energetically allowed region on the Poincaré plane.

{a}

{®)

.15 |
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Figure 4, Trajectories of the system In the physical
space qu — ¢q. (a) Trajectory in a regular region
{E = 0.00375); (b} trajectory in a chaotic region

(£ = 0.04875).

efficient for smoothing the motion as the energy
increases. To convince oneself of the existence of this
kind of constants, thizk on the 2V initial conditions,
which though well defined, are, in general, not
time-independent nor isolating,

(2) The low-energy behaviour of the Poincaré
sections illustrates the famous xAM theorem. This
theorem essentially states that in slightly perturbed
originally integrable systems, not all the tori are
destroyed by the perturbation but some are only
distorted. What we are exhibiting in figure 3(a) are
sections of the surviving tori at very low energies,
that is at very small perturbations. The sections also
illustrate that even close to £, not all the tori are
destroyed. The xam theorem is not easy to state
precisely and there are no simple proofs of it, how-
ever good discussion can be fournd in Berry (1978),
Amold (1978) or Tabor (1989), see also the very
simplified but illustrative discussion of Cuerno et af
(1992).

To summarize, the Poincaré section method may
be very illustrative because we can visually deter-

mine the chaotic region (le. the set of initial
conditions that lead to chaotic motion). The limi-
tation of the Poincaré method is its qualitative
natute, For quantifying chaos in a Hamiltonian
system we need the Liapunov exponents,

4.2. Liapunov exponents

The hailmark of a chaotic system is the sensitive
dependence on the initial conditions, This means
that if we follow the evolution of two originally
close trajectories, and evaluate their separation at
any time

dy(x,w) =

where x = (g, p), and w is the infinitesimal separation
vector in phase space (figure 5), we expect to find

di{x, w) ocexp (M), )]

A is clearly the rate of the exponential separation
growth in the direction w away from the original
trajectory. In a chaotic case X is a positive number,
while in a regular one A vanishes. This number is
one of the most usual indicators of the dynamical
behaviour, it is called the Liapunov exponent, and
describes how seasitive the system is to pertur-
bations in the direction of w. With expression (9} in
mind, it is not difficult to accept that the Liapunov
exponent can be evaluated as

A= lim lzog(——d'("’ “)). (10)
=0 1" \dp{x, w)
Before we go further, notice two very important
poinis: first, we have 2N exponents, since this is the
number of independent directions in which we can
‘perturb’ the initial condition in phase space, and
second, the existence of an exponential divergence
is only an absolute guarantee of irregular motion
when the phase-space region accessible to the system
is bounded. For unbounded or scattering states, we
can use Liapunov exponents, and even Poincaré sec-
tions, for pinpointing possible stochastic motions,

Figure 5. Two initially very close trajectories in phase
space illustrating the separation vector w(r), whose
modulus d,(x, w) is needed for the calculation of X

o {t)
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Figure 6. Estimate of the maximum Liapunov exponent )\(1) versus integration time, for the chactic trajectory depicted
in figure 4(b}). Notice the convergence of the estimates towards ~ 0.037.

but they have to be defined in a different way,
see Bercovich er af (1991) for some ideas and
references. The important point here is that once
we have established the positivity of at least one
Liapunov exponent in a bounded system, it is
definitively chaotic.

We must point out also that the direct application
of expression (10), always produces the same number
irrespective of w (for details on how to use (10), see
Lichtenberg and Lieberman 1983 or Cuerno et af
1992). This is so since the growth produced by the
largest exponent will quickly overwhelm that caused
by the others. To caleulate the complete spectrum
of 2N Liapunov exponents one has to be careful
and use special methods (Wolf ez af 1985).

The maximum Liapunov exponent is enough for
determining the type of motion one has for a given
set of initial conditions. In the case of a two-
degrecs-of-freedom system, like the extensible pendu-
lum, the maximum Liapunov exponent determines all
exponents, We prove this in what follows.

To begin with, we know that the phase-space
volume is preserved since we are dealing with a
Hamiltonian system. Let us say that F{z) is the
phase-space volume at any time ¢, then ¥(t} =¥,
where ¥} is the initial volume. According to (9}, the
volume must evolve as

V(t) = Vo exp{Amyt)exp (At} - exp (Aawy?)
= Vo exp[(Ay + Ay + - + Aaw)e]
=¥y, {11)

hence, the sum of all Liapunov exponents in a
Hamiltonian system vanishes. Furthermore, one of
the Liapunov exponents always vanishes since, as
no trajectory can diverge from itself, the Liapunov

exponent in the direction of the motion must
vanish. We can also prove that the Liapunov expo-
nents occur in pairs with the same magnitude but
opposite sign, i.e. for any A;) there exists another
Ay, with i#j, such that Ay = —Xyy. The proof
is, in fact, identical to that given above for the
vanishing of the sum of all Liapunov exponeuts,
but we have to use the invariance of the area on
the two-dimensional subspaces (g; — p;), i.e. the so-
called Poincaré integral invariants (Sudarshan and
Mukunda 1974), instead of the constancy of V.
These considerations establish that in a two-
degrees-of-freedom system, the maximum Liapunov
exponent, '\(l)= suffices to determine the whole
spectrum, since according to the recent discussion,
we should have )\(4) = —A“) and A(g} = 4\(3] =0.

A way to check the qualitative conclusions
obtained in the previous section on the chaoticity
of the extensible pendulum is by computing the maxi-
mum Liapunov exponent A;. We have evaluated it
for one trajectory in the sea of chaotic points for
¢=10.75 and E = 0.04875; the results of this calcu-
lation are exhibited in figure 6, where we clearly
see that A, ~ 0.037 > 0. The trajectory is definitively
chaotic.

The simultaneous existence of contracting and
expanding directions in a chaotic system, that is of
pairs of ‘zero-sum’ Liapunov exponents, is illus-
trated in figure 7. This figure exhibits, for the pur-
poses of comparison, the evolution of a small
square of initfal conditions (0.01 < ¢, < 0.05} on
the Poincaré plane, for regular (figure 7(a)), and
stochastic (figure 7(b)} trajectories of the extensible
pendulum. In the regular region the separation
between close initial conditions changes slowly if at
all and the initial square does not suoffer great
changes or deformations during the evolution. But,
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Figure 7. Effect of the dynamics, shown at times {, = 0,
t =25ty =5, t; = 10, ty = 15, and {5 = 20, on a small
area of initial conditions in the Poincaré plane: (a)
regular region; (b) stochastic region. The energies are
as in figure 4. Notice that the size of the initial square is
the same in both cases.

in the stochastic region, two antagonistic trends are
competing. Close initial conditions separate expo-
nentially with time while, conversely, they must pre-
serve the initial area. This may appear at first sight
impossible, but as figure 7(b) exhibits, this is not so,
since together with the expansion there is an obvious
process of contraction in another direction. The intri-
cacies of the phase-space motion in the chaotic case
may at first defy the imagination.

4.3. Correlation function

Another way of exhibiting the difference between a
chaotic and a regular orbit is visualizing the ‘loss’
of memory typical of chaotic evolution, which can
be spotted through the autocorrelation function (AF)
of a trajectory which measures the ‘similarity’
between a certain initial motion and later ones. In
the case of chaotic behaviour, the system quickly
loses information about its previous states and the

aF therefore tends to zero after a sufficiently long
time interval. On the other hand, in a regular trajec-
tory the aF does not vanish. This may be interpreted
in the following way: if we integrate the equations of
motion of the system from I to f,, with £y < 1;, and
afterwards we take the final state (#)) as the tnitial
condition and integrate backwards in time, if the
orbit is chaotic we would not be able to come back
to the original initial condition at ry; whereas a reg-
ular orbit does not lose information of its past
history, and we would be able to return, integrating
backwards in time, to the original initial state.

As we have said, the correlation function for a
chaotic orbit tends to zero with time because the
information of its past does not allow complete con-
fidence in forecasting its future, while the correlation
function of a regular orbit oscillates but never tends
to zero; this means that it is feasible to predict con-
fidently the future behaviour of the system. These
two cases are illustrated in figures 8(a) and (b) for
regular and chaotic orbits, respectively, of the exten-
sible pendulum (we used x =g, in these caloula-
tions). It is interesting to notice that the correlation
function of a regular orbit decreases and then
increases, but always maintains an approximately
constant average value. This is so because a periodic
or conditionally periodic orbit moves away from its
initial condition (the correlation function decreases
on the average) but after a certain period of time it
comes back near the initial condition (the correla-
tion function increases to approximately the original
average value). In the chaotic case, on the contrary,
the correlation function vanishes rapidly because
the trajectory loses information about its past
evolution; however, since the chaotic orbits fill
densely the phase space available to the system,
there exists a finite time in which the orbit is as close
as we may want to the initial condition. This explains
why the correlation function of a chaotic orbit (figure
(b)) grows again after tending to zero and in general
oscillates.

5. Conclusions

We have seen that the extensible pendulum is an
interesting and seemingly simple Hamiltonian sys-
tem which displays very complex behaviour. We
used numerical techniques to establish the coexist-
ence of chaotic and regular orbits on the phase space
of the system. The extensible pendulum is well suited
for illustrating the differences between regularity and
stochasticity in a system trajectory. To exhibit such
different features of the motion we have used as indi-
cators Poincaré mappings, the appearance of the
physical orbits, the evolution of a small set of initial
conditions on the Poincaré plane, the maximum
Liapunov exponent and the autocorrelation func-
tion. The simultaneous use of all these methods
seems advisable due to the complementary value
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Figure 8. Autocorrelation functions for trajectories in {a} regular region; (b) chaotic region. Energies as in figures 4
and 7. The autocorrelation function was evaluated using the coordinate g,(¢) by taking the Fourier transform of its

power spectrum.

they have. We have tried to explain and justify
the meaning and some basic properties of the less
familiar indicators. Given the apparent simplicity of
the extensible pendulum and the great deal of
physical and mathematical research dome upon i,
the system can be useful in mechanics courses to
illustrate basic concepts and technigues of non-
linear dynamics. The indicators studied have very
direct interpretations and may help to convey the
idea that most systems are non-integrable and there-
fore that they possess very complicated patterns of
evolution and, thus, their long term evolution is
unpredictable.
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