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Three-Dimensional Nonlinear Lattices: From Oblique Vortices and Octupoles
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We construct a variety of novel localized topological structures in the 3D discrete nonlinear
Schrödinger equation. The states can be created in Bose-Einstein condensates trapped in strong optical
lattices and crystals built of microresonators. These new structures, most of which have no counterparts in
lower dimensions, range from multipole patterns and diagonal vortices to vortex ‘‘cubes’’ (stack of two
quasiplanar vortices) and ‘‘diamonds’’ (formed by two orthogonal vortices).
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Introduction.—Recently, much attention has been paid
to the study of intrinsic localized modes (ILMs, alias
discrete solitons) in nonlinear dynamical lattices, espe-
cially due to the ability of such modes to act as energy
‘‘hot spots’’ [1]. The relevance of ILMs has been demon-
strated in problems ranging from arrays of nonlinear-
optical waveguides [2] and photonic crystals [3] to Bose-
Einstein condensates (BECs) trapped in optical lattices
(OLs) [4,5] and Josephson-junction ladders [6].

A universal model, which may arise as an envelope
approximation from most of the complex nonlinear equa-
tions on the lattice and also as a direct physical model for
BECs [4] and optical waveguide arrays [7], is the discrete
nonlinear Schrödinger (DNLS) equation [8]. On top of
its significance to applications, the DNLS equation itself
is a fundamentally interesting dynamical model. In the
3D case, its direct physical realization is provided, as
mentioned above, by BECs trapped in strong OLs [4].
Waveguide arrays, however, cannot be described by a 3D
discrete model, since the evolution variable in the optical
media is a spatial coordinate, while the temporal variable,
which effectively plays the role of an additional quasi-
spatial one, cannot be discrete. Nevertheless, another phy-
sical realization of the 3D DNLS equation may be provided
by a crystal built of microresonators [9].

The study of the 3D continuum NLS equation, including
a 3D [10] or quasi-2D [11] OL, and of the DNLS model
proper [12] has started recently, becoming accessible to
numerical computations. As a result, the first coherent
structures, such as discrete vortices of the topological
charge (vorticity) S � 1, 2, and 3, were identified and their
stability was investigated. The aim of the present work is to
study a large variety of novel localized 3D structures in the
DNLS equation, many of which turn out to be stable. In
particular, we first construct states which include dipoles
with the axis oriented along a lattice bond, or along a
planar diagonal, or along a 3D diagonal (we call them,
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respectively, ‘‘straight,’’ ‘‘oblique,’’ and ‘‘diagonal’’ di-
poles). Next, we construct quadrupole and octupole states,
that, similar to the dipoles, are real solutions. More com-
plex structures are also found, namely, ‘‘vortex cubes’’
(a stack of two straight vortices with the same or opposite
charges centered on parallel planes), oblique and diagonal
vortices, and ‘‘vortex diamonds,’’ formed by a crossed pair
of vortices with orthogonal axes. Apart from the quadru-
poles and straight and oblique dipoles, these ILMs have no
counterparts in 2D lattices.

To present the results, we first introduce the model, and
then report systematic results for the shape and stability of
the new localized states. This is followed by conclusions,
including an explanation for the stability and instability of
the majority of patterns found in this work.

The model.—We consider the DNLS equation on the
cubic lattice with a coupling constant C [12],

i _�l;m;n � C��l;m;n � j�l;m;nj
2�l;m;n � 0; (1)

where _��d�=dt, and the discrete Laplacian is��l;m;n �
�l�1;m;n � �l;m�1;n � �l;m;n�1 � �l�1;m;n ��l;m�1;n �
�l;m;n�1 � 6�l;m;n. Solutions are looked for as �l;m;n �
ul;m;n exp�i
t� with a frequency �
 (or the chemical
potential in the context of BECs), where the stationary
functions ul;m;n obey the equation


ul;m;n � C�ul;m;n � jul;m;nj
2ul;m;n: (2)

Profiles used as an initial guess for the fixed-point iteration
converging to solutions displayed below were based on the
form of the respective solutions (for the same 
) in the
anticontinuum (AC) limit, C � 0. Once solutions to Eq. (2)
have been obtained, the linear-stability analysis is per-
formed for a perturbed solution [12], �l;m;n � �ul;m;n �

��al;m;ne
�t � bl;m;ne

�	t�
ei
t, where � is an infinitesimal
amplitude of the perturbation, and � is its eigenvalue.
The Hamiltonian nature of the system dictates that if � is
1-1  2005 The American Physical Society
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FIG. 1 (color online). Stable multipoles. The top row de-
picts stable tight dipoles (d � 1): (a) straight, (b) oblique,
and (c) diagonal ones. (d),(e) Quadrupoles in the n � 0 plane,
with internal separation d � 1 and d � 2, respectively.
(f),(g) Octupoles with d � 1 and d � 2. Panel (h) displays the
stability threshold C�3D;d�

cr as a function of the internal distance d
for (from top to bottom) diagonal, oblique, and straight dipoles,
octupoles, and quadrupoles. The horizontal dashed line corre-
sponds to the stability threshold for the fundamental discrete
soliton. Note that, for the quadrupole (bottom graph), C�3D;d�

quad

behaves linearly for small d (see the dashed line with slope 0325
for guidance). In panels (a)–(g), level contour corresponding to
Re�ul;m;n� � �0:5 are shown in blue (dark gray) and red (gray),
respectively. All these states are stable (for the case shown, with

 � 2 and C � 0:1).
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an eigenvalue, then so are ��, �	, and ��	 (in the stable
case, � is imaginary; hence this symmetry yields only two
different eigenvalues, � and ��). The stationary solution is
unstable if at least one pair of the eigenvalues features
nonvanishing real parts.

Results.—We start by constructing purely real solutions
of the dipole type (in lower-dimensional models, solitons
of this type were considered in Refs. [13,14]). Figure 1
displays examples of ‘‘tight’’ dipoles with adjacent excited
sites (i.e., the separation between them is d � 1, in the
corresponding units) and three possible orientations rela-
tive to the lattice: (a) straight (along a lattice’s bond),
(b) oblique (along a planar diagonal), and (c) diagonal
(along a 3D diagonal). In this figure and in the text that
follows, unless stated otherwise, we show a typical case
admitting stable solutions, with C � 0:1 and 
 � 2. The
borders of the stability windows, 0 � C � C�3D;d�

dip , for
the three types (straight, oblique, and diagonal) of the
dipoles are given by C�3D;1�

dip-str � 0:230 13� �C, C�3D;1�
dip-obl �

0:536 66� �C, and C�3D;1�
dip-dia � 0:730 84� �C, where the

error margin is �C � 0:000 01. We observe that the diago-
nal dipole in Fig. 1(c) remains stable in a larger interval
than its oblique counterparts in Fig. 1(b), which, in turn, is
more stable that the straight one in Fig. 1(a). It is also
possible to construct dipole solutions corresponding to d �
2, with excited sites separated by a single nearly empty
site. Such dipole solutions (not depicted here) have larger
stability windows than their tight (d � 1) counterparts:
C�3D;2�
dip-str � 0:667 22, C�3D;2�

dip-obl � 1:080 24, and C�3D;2�
dip-dia �

1:313 56. As seen in Fig. 1(h), C�3D;d�
dip further increases

with the separation distance d, approaching the stability
threshold of the fundamental (single-site-based) discrete
soliton, C�3D;1�

dip �C�3D�
fund�2:009�0:001 [12]; see the hori-

zontal dashed line in the figure. It can also be found that the
same relations, 0<C�3D;d�

dip-str <C�3D;d�
dip-obl <C�3D;d�

dip-dia, as found
for d � 1 are valid for all d; see Fig. 1(h). Another relevant
comparison is with dipoles in the 2D DNLS model, which
were studied in Ref. [15]. The comparison shows that
oblique and straight dipole solitons, which have their
counterparts in the 2D case, are less stable, although not
drastically, than those counterparts: C�3D;1�

dip-str � 0:230 13<

C�2D;1�
dip-str � 0:245� 0:005 for 
 � 2. The weaker stability

of the 3D structures is explained by the analogy with the
continuum NLS equation, where solitons are destabilized
by collapse, which is, respectively, weak and strong in the
2D and 3D cases [16].

Quadrupole and octupole solitons are also shown in
Fig. 1. The quadrupole is based on four contiguous sites
(d � 1) which form a square in the plane, Fig. 1(d). It is
found to be stable for C< C�3D;1�

quad � 0:138 36, while its 2D
analog has C�2D;1�

quad � 0:1485� 0:0005 [17]. Again, as for
the dipoles, the 2D configurations tend to be slightly more
20390
stable than their 3D siblings. The octupole is shown in
Fig. 1(f); it is based on a set of eight contiguous sites
(d � 1 as well) forming a cubic cell in the 3D lattice. It
is stable in the interval C< C�3D;1�

oct � 0:100 30, which is
smaller than the above ones for the quadrupoles and
dipoles. Similar to the dipoles, multipoles can also
‘‘swell’’ by inserting unpopulated sites between the excited
ones. The resulting stability intervals for d � 2 are larger
than their d � 1 counterparts: C�3D;2�

quad � 0:503 232 and

C�3D;2�
oct � 0:418 411; see Figs. 1(e) and 1(g), respectively.

It is relevant to mention that all the newly found structures
have their stability limits lower than the above-mentioned
limit for the fundamental (single-site-based) discrete soli-
ton, C�3D�

fund � 2:009� 0:001 [12]; see Fig. 1(h).
Stable dipoles have one pair of imaginary eigenvalues in

their stability spectrum that, with the increase of C, col-
lides with the continuous spectrum, which leads to the
destabilization. On the other hand, stable quadrupoles
have three such pairs (two of them form a doublet for
small C), and the octupoles have seven (six of which
1-2
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form two triplets for small C). More generally, the number
of potentially unstable eigenvalue pairs is N � 1, where N
is the number of sites on which the structure is based [18].

The next novel type of a 3D discrete soliton, with no
lower-dimensional counterpart, is a vortex cube, which is
built as a stack of two quasiplanar vortices with equal
topological charges S1 � S2 � 1 and a phase shift �� �
�, separated by an empty layer, so that it has d � 2.
Figure 2(a) shows real and imaginary parts of the vortex-
cube lattice field. Such a state is stable for 0 � C �

C�3D;2�
cub;� � 0:563 24. On the contrary, a vortex cube built

as a stack of two in-phase vortices (�� � 0) is always
unstable, through three real eigenvalue pairs. Further,
Fig. 2(b) shows a similar stack, but composed of two
vortices with opposite charges, S1 � �S2 � 1. This con-
figuration is always unstable as well, due to a real eigen-
value pair. The instability is manifested as a symmetry
breaking between the two planes leading to the loss of
phase coherence of the pattern; see Fig. 2(c).

Another 3D object, with no lower-dimensional analog
either, is a vortex with the axis directed along the diagonal
of the cubic lattice, i.e., the vector �1; 1; 1�. Figure 3(a)
shows such a ‘‘diagonal vortex’’ constructed by a con-
tinuation procedure starting, in the AC limit, with the
following distribution of phases: �l;m;n � 2�Sk=6 (k �
0; 1; 2; . . . ; 5) for the sites that lie in a plane orthogonal to
the axial (diagonal) direction: �1;�1; 0�, �0;�1; 1�,
��1; 0; 1�, ��1; 1; 0�, �0; 1;�1�, �1; 0;�1�. Obviously,
this phase pattern bears the vorticity S (S � 1 in Fig. 3).
However, the diagonal vortex turns out to be always un-
stable, due to three real eigenvalue pairs, and it eventually
settles to a single-site-based soliton.

One more species of discrete vortices that may exist
solely in the 3D lattice is an oblique one, shown in
Figs. 3(b) and 3(c), with the axis directed along �1; 1; 0�.
In the AC limit, the solution is carried by the array of sites
�1;�1; 0�, �1;�1; 1�, �0; 0; 1�, ��1; 1; 1�, ��1; 1; 0�,
��1; 1;�1�, �0; 0;�1�, and �1;�1;�1�, with respective
phases S � �0;�;�=2;���=2;�;���;3�=2;��3�=2�,
(a) (b) (c)
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FIG. 2 (color online). Vortex cubes for 
 � 2 and C � 0:1.
Panel (a) shows a stable vortex cube, built of two quasiplanar
vortices with equal vorticities, S1 � S2 � 1, and a phase shift of
�. Panel (b) shows an unstable cube formed by vortices with
opposite charges, S1 � �S2, and panel (c) shows a snapshot (at
t � 200) of its evolution, clearly demonstrating that the phase
coherence is lost. The real level contours are as in Fig. 1, and the
imaginary ones, Im�ul;m;n� � �0:5, are shown by green (light
gray) and yellow (very light gray) hues, respectively.
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where � � tan�1�1=
���

2
p

�. Figure 3(b) depicts such an
oblique vortex, which, in this form, is found to be always
unstable, similar to the diagonal vortex. Nonetheless, the
oblique vortex can be stabilized in a modified form, by
introducing a sign shift at the intermediate edge sites [i.e.,
�0; 0; 1�, ��1; 1; 0�, �0; 0;�1�, and �1;�1; 0�]; see Fig. 3(c).
This sign change avoids having contiguous sites with the
same phase and does not alter the vortex’s topological
charge, which remains 1. The modified oblique vortex is
stable in a small interval, C< C�3D�

vor-obl � 0:0104.
Finally, motivated by the concept of Skyrmions [19],

which are distinguished by two topological charges asso-
ciated with closed contours in two perpendicular planes,
we have constructed one more type of vortex structures in
the 3D lattice, viz., a ‘‘diamond’’ shown in Fig. 4(a). It is
built as a vortex cross, i.e., a nonlinear superposition of two
straight S � 1 vortices, with axes directed along two or-
thogonal directions. The stability analysis shows that it is
always unstable due to a real eigenvalue pair. The insta-
bility manifests itself in a rather intriguing manner; see
Fig. 4(b). At t � 100, two pairs of opposite vertices change
phases (one by �� and the other by ��). After this, the
diamond remains stable until t � 200, when the same pairs
of sites suffer a second phase shift (in the same direction)
and the configuration returns to its original phase distribu-
tion. This process repeats itself almost periodically [to-
gether with small amplitude variations of �10%; see the
top panel of Fig. 4(b)] until the phase coherence is finally
lost and the solution degenerates into a plain single-site-
based soliton.

Conclusions and discussion.—We have introduced sev-
eral novel species of topologically structured discrete sol-
itons in 3D dynamical lattices, using the paradigm of the
discrete nonlinear Schrödinger equation. The solutions
have been constructed starting from properly chosen anti-
continuum approximations, and their linear stability has
been studied. Previously, only the fundamental single-site-
based solitons and straight vortices, with the axis directed
along a lattice bond, were known. We have found three
species of dipoles which differ by the orientation relative to
the lattice, quadrupoles and octupoles, vortex cubes
(stacked dual-vortex patterns), diagonal and oblique vorti-
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FIG. 3 (color online). Diagonal and oblique vortices.
Panel (a) shows an unstable diagonal vortex, with the axis along
the direction �1; 1; 1�, for
 � 2 and C � 0:1. Panel (b) shows an
unstable oblique vortex with the axis oriented along the direction
�1; 1; 0�, and panel (c) shows a stable oblique vortex of a
modified form (see text) for 
 � 2 and C � 0:01.
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FIG. 4 (color online). The vortex diamond for 
 � 2 and
C � 0:1. Panel (a) displays an unstable diamond, and
panel (b) depicts its evolution, in terms of the field’s magnitude
(top) and phase (bottom) at the main six lattice sites. Initially
(t < 300), pairs of sites (opposite vertices of the diamond)
cyclically change the phase, and subsequently (t > 350) the
phase coherence is lost and the field magnitude oscillates errati-
cally about its initial level.
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ces, and diamonds (vortex crosses or discrete Skyrmions).
Except for the straight and oblique dipoles and quadru-
poles, the patterns obtained are endemic to the 3D lattice
setting, having no counterparts in lower dimensions.

Apart from the diagonal vortices and diamonds, all the
patterns constructed above have stability regions below a
critical value of the coupling parameter. It is possible to
explain the stability or instability of all the structures
realized as bound states of simpler objects, viz., dipoles,
quadrupoles (bound states of two dipoles with opposite
orientations), octupoles (bound states of two quadrupoles),
and vortex cubes. Indeed, a known general principle is that
a bound state pinned by the lattice may be stable only if the
coupled objects repel each other [15,20] (i.e., have a phase
difference of � between their building blocks). This ex-
plains the existence of stability regions for multipoles of
all types. Similarly, considering the interaction between
constituent quasiplanar vortices, one may understand the
stability and instability of vortex cubes of the types shown
in Figs. 2(a) and 2(b), respectively. Following this princi-
ple, it is also possible to predict the stability of more exotic
3D patterns, such as bound states of two oblique or diago-
nal dipoles, or octupoles constructed of two such states. In
those cases when the 3D structures have 2D counterparts,
viz., straight and oblique dipoles and quadrupoles, their
stability regions are narrower than in the 2D case, which is
explained by a stronger trend to collapse in three dimen-
sions. Future challenges involve semianalytical investiga-
tion of such solutions via the Lyapunov-Schmidt theory,
and identification of their stability by means of methods
similar to those developed for the 1D and 2D cases [18].

The findings presented in this manuscript may pave the
way for the observation of stable bound state configura-
tions of solitary waves and vortices such as the ones
identified herein. This is in sharp contrast to the continuum
20390
case, where such configurations would be strongly unstable
towards collapse. The experimental realization of 3D opti-
cal lattices in Bose-Einstein condensates may provide the
most fertile ground for the observation of lattice-induced
stabilization of such configurations [5].
1-4
[1] S. Aubry, Physica (Amsterdam) 103D, 201 (1997);
S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998);
D. N. Christodoulides et al., Nature (London) 424, 817
(2003); D. K. Campbell et al., Phys. Today 57, No. 1, 43
(2004).

[2] See, e.g., A. A. Sukhorukov, Y. S. Kivshar, H. S.
Eisenberg, and Y. Silberberg, IEEE J. Quantum
Electron. 39, 31 (2003); U. Peschel et al., J. Opt. Soc.
Am. B 19, 2637 (2002).

[3] S. F. Mingaleev and Y. S. Kivshar, Phys. Rev. Lett. 86,
5474 (2001).

[4] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353
(2001); F. Kh. Abdullaev et al., Phys. Rev. A 64, 043606
(2001); F. S. Cataliotti et al., Science 293, 843 (2001);
A. Smerzi et al., Phys. Rev. Lett. 89, 170402 (2002); G. L.
Alfimov et al., Phys. Rev. E 66, 046608 (2002);
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